NeatMap - non-clustering heat map alternatives in R View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Satwik Rajaram, Yoshi Oono

ABSTRACT

BACKGROUND: The clustered heat map is the most popular means of visualizing genomic data. It compactly displays a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact of the heat map. RESULTS: NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3 dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be more informative than the traditional heat map with the help of two well-known microarray datasets. CONCLUSIONS: NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms. More... »

PAGES

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-45

DOI

http://dx.doi.org/10.1186/1471-2105-11-45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005559968

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20096121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Graphics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Programming Languages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, 61801-3080, Urbana, IL, USA", 
            "Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA", 
            "Department of Pharmacology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajaram", 
        "givenName": "Satwik", 
        "id": "sg:person.0623612724.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623612724.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, 61801-3080, Urbana, IL, USA", 
            "Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oono", 
        "givenName": "Yoshi", 
        "id": "sg:person.01062760663.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062760663.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0400782101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002732260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005385099", 
          "https://doi.org/10.1038/ng1543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005385099", 
          "https://doi.org/10.1038/ng1543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008107438", 
          "https://doi.org/10.1186/1471-2105-6-115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008107438", 
          "https://doi.org/10.1186/1471-2105-6-115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.9.12.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014767256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0530258100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016312020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.9.1194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018693099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018964677", 
          "https://doi.org/10.1007/bf02289694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032202599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2005.031032.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033916864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609508103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471712531.ch18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046719203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048816374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050149880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051317903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1151888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814447331_0043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096094023"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: The clustered heat map is the most popular means of visualizing genomic data. It compactly displays a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact of the heat map.\nRESULTS: NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3 dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be more informative than the traditional heat map with the help of two well-known microarray datasets.\nCONCLUSIONS: NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "NeatMap - non-clustering heat map alternatives in R", 
    "pagination": "45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a7d757d78b686685c5d36c2fb7ea0b6c69254b0acc7c51d7b4b06c6a3d2710c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20096121"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-45"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005559968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-45", 
      "https://app.dimensions.ai/details/publication/pub.1005559968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-11-45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-45'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      58 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-45 schema:about N0259bd2843fc4b5fa957d3480e34a05b
2 N072453b96278498f97bd3647e7893ec7
3 N22588c0701ff4e17aac76ae22affe16b
4 N4fe9e995c86f413da14053f6f05707da
5 N77a82c1dbd6347bbbb98fc53762515fa
6 N7eb2786039be4978bc38efc860bcc040
7 N899491b490da4c2d8d2581ec51553b69
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N917a1a5ce6a34f4583522f067a8d0119
11 schema:citation sg:pub.10.1007/bf02289694
12 sg:pub.10.1038/10343
13 sg:pub.10.1038/ng1543
14 sg:pub.10.1186/1471-2105-6-115
15 https://app.dimensions.ai/details/publication/pub.1074670452
16 https://doi.org/10.1002/0471712531.ch18
17 https://doi.org/10.1073/pnas.0400782101
18 https://doi.org/10.1073/pnas.0530258100
19 https://doi.org/10.1073/pnas.0609508103
20 https://doi.org/10.1073/pnas.95.25.14863
21 https://doi.org/10.1073/pnas.96.6.2907
22 https://doi.org/10.1091/mbc.9.12.3273
23 https://doi.org/10.1093/bioinformatics/18.3.413
24 https://doi.org/10.1093/bioinformatics/18.9.1194
25 https://doi.org/10.1093/bioinformatics/bti067
26 https://doi.org/10.1093/bioinformatics/bti517
27 https://doi.org/10.1093/bioinformatics/btl284
28 https://doi.org/10.1093/bioinformatics/btl406
29 https://doi.org/10.1111/j.0006-341x.2005.031032.x
30 https://doi.org/10.1126/science.1117727
31 https://doi.org/10.1126/science.1151888
32 https://doi.org/10.1142/9789814447331_0043
33 schema:datePublished 2010-12
34 schema:datePublishedReg 2010-12-01
35 schema:description BACKGROUND: The clustered heat map is the most popular means of visualizing genomic data. It compactly displays a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact of the heat map. RESULTS: NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3 dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be more informative than the traditional heat map with the help of two well-known microarray datasets. CONCLUSIONS: NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N0f34020637374da8ae9b6e3fbad2c982
40 Nfee961b66ab34c8a9590ec3a04f3d33d
41 sg:journal.1023786
42 schema:name NeatMap - non-clustering heat map alternatives in R
43 schema:pagination 45
44 schema:productId N16632afb51f843688dfbabe22a1e9b74
45 N53b0a306d5154daca478b38e04a4a17a
46 N73658b1273a042c9ae1bbe9d96f3cadf
47 Na2ca7094ec5241498a6f8f1fe16b4e95
48 Nb276ba2bd1df4694b54742056234d123
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005559968
50 https://doi.org/10.1186/1471-2105-11-45
51 schema:sdDatePublished 2019-04-10T21:35
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N1c5642712ee94f5e818ed9375d8cb881
54 schema:url http://link.springer.com/10.1186/1471-2105-11-45
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0259bd2843fc4b5fa957d3480e34a05b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Chromosome Mapping
60 rdf:type schema:DefinedTerm
61 N072453b96278498f97bd3647e7893ec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Algorithms
63 rdf:type schema:DefinedTerm
64 N0f34020637374da8ae9b6e3fbad2c982 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N16632afb51f843688dfbabe22a1e9b74 schema:name pubmed_id
67 schema:value 20096121
68 rdf:type schema:PropertyValue
69 N1c5642712ee94f5e818ed9375d8cb881 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N22588c0701ff4e17aac76ae22affe16b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Cluster Analysis
73 rdf:type schema:DefinedTerm
74 N233d015589ac4cdaa7d894cbe9605214 rdf:first sg:person.01062760663.98
75 rdf:rest rdf:nil
76 N4fe9e995c86f413da14053f6f05707da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Computer Graphics
78 rdf:type schema:DefinedTerm
79 N53b0a306d5154daca478b38e04a4a17a schema:name readcube_id
80 schema:value 1a7d757d78b686685c5d36c2fb7ea0b6c69254b0acc7c51d7b4b06c6a3d2710c
81 rdf:type schema:PropertyValue
82 N73658b1273a042c9ae1bbe9d96f3cadf schema:name nlm_unique_id
83 schema:value 100965194
84 rdf:type schema:PropertyValue
85 N77a82c1dbd6347bbbb98fc53762515fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Software
87 rdf:type schema:DefinedTerm
88 N7eb2786039be4978bc38efc860bcc040 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Programming Languages
90 rdf:type schema:DefinedTerm
91 N899491b490da4c2d8d2581ec51553b69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name User-Computer Interface
93 rdf:type schema:DefinedTerm
94 N917a1a5ce6a34f4583522f067a8d0119 rdf:first sg:person.0623612724.75
95 rdf:rest N233d015589ac4cdaa7d894cbe9605214
96 Na2ca7094ec5241498a6f8f1fe16b4e95 schema:name dimensions_id
97 schema:value pub.1005559968
98 rdf:type schema:PropertyValue
99 Nb276ba2bd1df4694b54742056234d123 schema:name doi
100 schema:value 10.1186/1471-2105-11-45
101 rdf:type schema:PropertyValue
102 Nfee961b66ab34c8a9590ec3a04f3d33d schema:volumeNumber 11
103 rdf:type schema:PublicationVolume
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:journal.1023786 schema:issn 1471-2105
111 schema:name BMC Bioinformatics
112 rdf:type schema:Periodical
113 sg:person.01062760663.98 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
114 schema:familyName Oono
115 schema:givenName Yoshi
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062760663.98
117 rdf:type schema:Person
118 sg:person.0623612724.75 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
119 schema:familyName Rajaram
120 schema:givenName Satwik
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623612724.75
122 rdf:type schema:Person
123 sg:pub.10.1007/bf02289694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018964677
124 https://doi.org/10.1007/bf02289694
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
127 https://doi.org/10.1038/10343
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ng1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385099
130 https://doi.org/10.1038/ng1543
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1471-2105-6-115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008107438
133 https://doi.org/10.1186/1471-2105-6-115
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1074670452 schema:CreativeWork
136 https://doi.org/10.1002/0471712531.ch18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046719203
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1073/pnas.0400782101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732260
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1073/pnas.0530258100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016312020
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0609508103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730943
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.96.6.2907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350330
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1091/mbc.9.12.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767256
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/bioinformatics/18.3.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051317903
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/18.9.1194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018693099
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/bti067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409795
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/bti517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202599
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btl284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050149880
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btl406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048816374
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.0006-341x.2005.031032.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033916864
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1117727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452592
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1151888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457246
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1142/9789814447331_0043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096094023
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
171 schema:name Department of Pharmacology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
172 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, 61801-3080, Urbana, IL, USA
173 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
176 schema:name Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, 61801-3080, Urbana, IL, USA
177 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...