rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Tae-Min Kim, Lovelace J Luquette, Ruibin Xi, Peter J Park

ABSTRACT

BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy. RESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results. CONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome. More... »

PAGES

432

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-432

DOI

http://dx.doi.org/10.1186/1471-2105-11-432

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047796464

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20718989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Cells, Cultured", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-Min", 
        "id": "sg:person.07662266304.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662266304.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luquette", 
        "givenName": "Lovelace J", 
        "id": "sg:person.01252725367.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252725367.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Ruibin", 
        "id": "sg:person.01025726540.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025726540.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA", 
            "Department of Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, 02115, Boston, Massachusetts, USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children's Hospital, 300 Longwood Ave., 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.f.256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001704732", 
          "https://doi.org/10.1038/nmeth.f.256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra0803109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002500139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxh008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014431182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025333243", 
          "https://doi.org/10.1038/nmeth.1276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092981.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029322821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.088633.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032076888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038614684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049575176", 
          "https://doi.org/10.1186/1471-2105-10-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2008.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049637368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.202610899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050518611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074859834", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7.10.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083159139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy.\nRESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results.\nCONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-432", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519756", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data", 
    "pagination": "432", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3b0b3b89dfc8160067f5f7bb163e0cd8503b38e30d0143fce5517503cd5e33d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20718989"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-432"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047796464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-432", 
      "https://app.dimensions.ai/details/publication/pub.1047796464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-11-432"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      62 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-432 schema:about N1c11092194a84247bcca2783967e75e3
2 N3f732311823040409d22c0c9f170bf9d
3 N7b415f896099465bb5f1b39b679916e4
4 N80b55ed55073466fb1f4f5294e348569
5 N982b804495564374881baf4025575884
6 Na1116eca6ace43888bc29fb58dea2746
7 Na2a784e081964bf0a6b8a1aff578e8f0
8 Nebb6016684d64673b1ae1f9167e75606
9 Ned9916529c974b4ca05619ec81c1355b
10 Nf74e267e034644f1aab163e4fbdbe192
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nef6b2b6c28dd48739fb1b2c562c67fa0
14 schema:citation sg:pub.10.1038/nature03959
15 sg:pub.10.1038/ng.437
16 sg:pub.10.1038/ng1215
17 sg:pub.10.1038/ng1569
18 sg:pub.10.1038/ng754
19 sg:pub.10.1038/nmeth.1276
20 sg:pub.10.1038/nmeth.f.256
21 sg:pub.10.1186/1471-2105-10-80
22 sg:pub.10.1186/gb-2009-10-3-r25
23 https://app.dimensions.ai/details/publication/pub.1074859834
24 https://doi.org/10.1016/0022-2836(81)90087-5
25 https://doi.org/10.1016/j.gde.2006.10.009
26 https://doi.org/10.1016/j.tig.2007.12.007
27 https://doi.org/10.1016/j.ygeno.2008.07.001
28 https://doi.org/10.1056/nejmra0803109
29 https://doi.org/10.1073/pnas.202610899
30 https://doi.org/10.1093/bioinformatics/bti611
31 https://doi.org/10.1093/biostatistics/kxh008
32 https://doi.org/10.1093/hmg/ddg261
33 https://doi.org/10.1093/nar/gki643
34 https://doi.org/10.1101/gr.088633.108
35 https://doi.org/10.1101/gr.092981.109
36 https://doi.org/10.1101/gr.7.10.986
37 schema:datePublished 2010-12
38 schema:datePublishedReg 2010-12-01
39 schema:description BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy. RESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results. CONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N25b77e148b754caea912debe62958154
44 N2c2fb43a89cf450f822d5d6b0ed140be
45 sg:journal.1023786
46 schema:name rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data
47 schema:pagination 432
48 schema:productId N2875c3e002124b61a52b4e078fe38bb3
49 N4be94c5bfc384aa5998163b2316f30c6
50 N51ad951934784fe88db1443244fe1673
51 N929ba4703ccf44bb90ef50ec77968d88
52 Nbd36ce23b7a74ae09ea0fbb234f21192
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047796464
54 https://doi.org/10.1186/1471-2105-11-432
55 schema:sdDatePublished 2019-04-11T10:15
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Neeb9eea4a1c74f3780d10b6398effe8b
58 schema:url https://link.springer.com/10.1186%2F1471-2105-11-432
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N1c11092194a84247bcca2783967e75e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Genome, Human
64 rdf:type schema:DefinedTerm
65 N25b77e148b754caea912debe62958154 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N2875c3e002124b61a52b4e078fe38bb3 schema:name pubmed_id
68 schema:value 20718989
69 rdf:type schema:PropertyValue
70 N2c2fb43a89cf450f822d5d6b0ed140be schema:volumeNumber 11
71 rdf:type schema:PublicationVolume
72 N3f732311823040409d22c0c9f170bf9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Oligonucleotide Array Sequence Analysis
74 rdf:type schema:DefinedTerm
75 N4be94c5bfc384aa5998163b2316f30c6 schema:name readcube_id
76 schema:value e3b0b3b89dfc8160067f5f7bb163e0cd8503b38e30d0143fce5517503cd5e33d
77 rdf:type schema:PropertyValue
78 N4d49278d568e47bf91f27035ac115e67 rdf:first sg:person.01025726540.95
79 rdf:rest N99e96a144c8b418fa4d3982a434859f4
80 N51ad951934784fe88db1443244fe1673 schema:name dimensions_id
81 schema:value pub.1047796464
82 rdf:type schema:PropertyValue
83 N7b415f896099465bb5f1b39b679916e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Computer Simulation
85 rdf:type schema:DefinedTerm
86 N80b55ed55073466fb1f4f5294e348569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Tumor Cells, Cultured
88 rdf:type schema:DefinedTerm
89 N929ba4703ccf44bb90ef50ec77968d88 schema:name nlm_unique_id
90 schema:value 100965194
91 rdf:type schema:PropertyValue
92 N982b804495564374881baf4025575884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name DNA Copy Number Variations
94 rdf:type schema:DefinedTerm
95 N99e96a144c8b418fa4d3982a434859f4 rdf:first sg:person.01024612701.33
96 rdf:rest rdf:nil
97 Na1116eca6ace43888bc29fb58dea2746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 Na2a784e081964bf0a6b8a1aff578e8f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Algorithms
102 rdf:type schema:DefinedTerm
103 Na5caae33743a4a5b866223c26b3585e4 rdf:first sg:person.01252725367.32
104 rdf:rest N4d49278d568e47bf91f27035ac115e67
105 Nbd36ce23b7a74ae09ea0fbb234f21192 schema:name doi
106 schema:value 10.1186/1471-2105-11-432
107 rdf:type schema:PropertyValue
108 Nebb6016684d64673b1ae1f9167e75606 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Base Sequence
110 rdf:type schema:DefinedTerm
111 Ned9916529c974b4ca05619ec81c1355b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name DNA, Neoplasm
113 rdf:type schema:DefinedTerm
114 Neeb9eea4a1c74f3780d10b6398effe8b schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nef6b2b6c28dd48739fb1b2c562c67fa0 rdf:first sg:person.07662266304.49
117 rdf:rest Na5caae33743a4a5b866223c26b3585e4
118 Nf74e267e034644f1aab163e4fbdbe192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Sequence Analysis, DNA
120 rdf:type schema:DefinedTerm
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-432
128 rdf:type schema:MonetaryGrant
129 sg:journal.1023786 schema:issn 1471-2105
130 schema:name BMC Bioinformatics
131 rdf:type schema:Periodical
132 sg:person.01024612701.33 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
133 schema:familyName Park
134 schema:givenName Peter J
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
136 rdf:type schema:Person
137 sg:person.01025726540.95 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
138 schema:familyName Xi
139 schema:givenName Ruibin
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025726540.95
141 rdf:type schema:Person
142 sg:person.01252725367.32 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
143 schema:familyName Luquette
144 schema:givenName Lovelace J
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252725367.32
146 rdf:type schema:Person
147 sg:person.07662266304.49 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
148 schema:familyName Kim
149 schema:givenName Tae-Min
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662266304.49
151 rdf:type schema:Person
152 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
153 https://doi.org/10.1038/nature03959
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ng.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
156 https://doi.org/10.1038/ng.437
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ng1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015362478
159 https://doi.org/10.1038/ng1215
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ng1569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013223130
162 https://doi.org/10.1038/ng1569
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010978328
165 https://doi.org/10.1038/ng754
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
168 https://doi.org/10.1038/nmeth.1276
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nmeth.f.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001704732
171 https://doi.org/10.1038/nmeth.f.256
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-10-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049575176
174 https://doi.org/10.1186/1471-2105-10-80
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
177 https://doi.org/10.1186/gb-2009-10-3-r25
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1074859834 schema:CreativeWork
180 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ygeno.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049637368
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1056/nejmra0803109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002500139
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.202610899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050518611
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/bioinformatics/bti611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090615
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/biostatistics/kxh008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431182
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/hmg/ddg261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038614684
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gki643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215405
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.088633.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032076888
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.092981.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322821
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/gr.7.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083159139
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
207 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA
208 Department of Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, 02115, Boston, Massachusetts, USA
209 Harvard-MIT Health Sciences and Technology Informatics Program at Children's Hospital, 300 Longwood Ave., 02115, Boston, Massachusetts, USA
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
212 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...