rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Tae-Min Kim, Lovelace J Luquette, Ruibin Xi, Peter J Park

ABSTRACT

BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy. RESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results. CONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome. More... »

PAGES

432

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-432

DOI

http://dx.doi.org/10.1186/1471-2105-11-432

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047796464

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20718989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Neoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Cells, Cultured", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-Min", 
        "id": "sg:person.07662266304.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662266304.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luquette", 
        "givenName": "Lovelace J", 
        "id": "sg:person.01252725367.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252725367.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Ruibin", 
        "id": "sg:person.01025726540.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025726540.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA", 
            "Department of Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, 02115, Boston, Massachusetts, USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children's Hospital, 300 Longwood Ave., 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.f.256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001704732", 
          "https://doi.org/10.1038/nmeth.f.256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra0803109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002500139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978328", 
          "https://doi.org/10.1038/ng754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013090615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223130", 
          "https://doi.org/10.1038/ng1569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxh008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014431182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015362478", 
          "https://doi.org/10.1038/ng1215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025333243", 
          "https://doi.org/10.1038/nmeth.1276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092981.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029322821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.088633.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032076888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038614684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049575176", 
          "https://doi.org/10.1186/1471-2105-10-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2008.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049637368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.202610899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050518611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074859834", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7.10.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083159139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy.\nRESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results.\nCONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-432", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519756", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data", 
    "pagination": "432", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3b0b3b89dfc8160067f5f7bb163e0cd8503b38e30d0143fce5517503cd5e33d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20718989"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-432"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047796464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-432", 
      "https://app.dimensions.ai/details/publication/pub.1047796464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-11-432"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-432'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      62 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-432 schema:about N18c3f54be63d452d9e4b4e9457f9550a
2 N190b96b3eb924ca982ee2d1fbcccc05b
3 N2b034562bcb947a6b73865f8d76259ec
4 N2e57f1fed8a64998b190935c4839f278
5 N34738309fcf84944bb51591a0ece1429
6 N653bb26235104ef790b3ad3750df690b
7 N668af2fb0279477a8cd5bee4faf155f1
8 N6a4ad4d82c6142ad84997be9abef55ba
9 N88a391611e344eba9f50fedd8ceef1f4
10 N935363d77e9a41ebbe5ba8b290a3d905
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N4f9e63bc83c04ca78942e99fe3f745ec
14 schema:citation sg:pub.10.1038/nature03959
15 sg:pub.10.1038/ng.437
16 sg:pub.10.1038/ng1215
17 sg:pub.10.1038/ng1569
18 sg:pub.10.1038/ng754
19 sg:pub.10.1038/nmeth.1276
20 sg:pub.10.1038/nmeth.f.256
21 sg:pub.10.1186/1471-2105-10-80
22 sg:pub.10.1186/gb-2009-10-3-r25
23 https://app.dimensions.ai/details/publication/pub.1074859834
24 https://doi.org/10.1016/0022-2836(81)90087-5
25 https://doi.org/10.1016/j.gde.2006.10.009
26 https://doi.org/10.1016/j.tig.2007.12.007
27 https://doi.org/10.1016/j.ygeno.2008.07.001
28 https://doi.org/10.1056/nejmra0803109
29 https://doi.org/10.1073/pnas.202610899
30 https://doi.org/10.1093/bioinformatics/bti611
31 https://doi.org/10.1093/biostatistics/kxh008
32 https://doi.org/10.1093/hmg/ddg261
33 https://doi.org/10.1093/nar/gki643
34 https://doi.org/10.1101/gr.088633.108
35 https://doi.org/10.1101/gr.092981.109
36 https://doi.org/10.1101/gr.7.10.986
37 schema:datePublished 2010-12
38 schema:datePublishedReg 2010-12-01
39 schema:description BACKGROUND: Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy. RESULTS: We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq) to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results. CONCLUSION: We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N09d59181b1d845149e8a2fa6a7624a4e
44 Nb78fe6b84f484a5581153891c4f76505
45 sg:journal.1023786
46 schema:name rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data
47 schema:pagination 432
48 schema:productId N667e73bee558400397afd5ce6331ebd8
49 N72269e83bafe4fc580dab27aa365cda2
50 N8ae52cda8a01494b9b552d278da34480
51 Nd7a4cf84238a4d058f22379bcca1dc02
52 Ne70f7330b7a340d7a9c3296aceed0463
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047796464
54 https://doi.org/10.1186/1471-2105-11-432
55 schema:sdDatePublished 2019-04-11T10:15
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Na3dd9e40202842189a7ffca2b412307f
58 schema:url https://link.springer.com/10.1186%2F1471-2105-11-432
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N053b75f87c2f4c43b75ad9ef757a6f8a rdf:first sg:person.01025726540.95
63 rdf:rest Ne863e4b44ddc459ea0f084da5c77802b
64 N09d59181b1d845149e8a2fa6a7624a4e schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N18c3f54be63d452d9e4b4e9457f9550a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name DNA Copy Number Variations
68 rdf:type schema:DefinedTerm
69 N190b96b3eb924ca982ee2d1fbcccc05b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N2b034562bcb947a6b73865f8d76259ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Base Sequence
74 rdf:type schema:DefinedTerm
75 N2e57f1fed8a64998b190935c4839f278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Tumor Cells, Cultured
77 rdf:type schema:DefinedTerm
78 N34738309fcf84944bb51591a0ece1429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Oligonucleotide Array Sequence Analysis
80 rdf:type schema:DefinedTerm
81 N4f9e63bc83c04ca78942e99fe3f745ec rdf:first sg:person.07662266304.49
82 rdf:rest N6925fda1577d434193184d9b86cfde2d
83 N653bb26235104ef790b3ad3750df690b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Algorithms
85 rdf:type schema:DefinedTerm
86 N667e73bee558400397afd5ce6331ebd8 schema:name doi
87 schema:value 10.1186/1471-2105-11-432
88 rdf:type schema:PropertyValue
89 N668af2fb0279477a8cd5bee4faf155f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Sequence Analysis, DNA
91 rdf:type schema:DefinedTerm
92 N6925fda1577d434193184d9b86cfde2d rdf:first sg:person.01252725367.32
93 rdf:rest N053b75f87c2f4c43b75ad9ef757a6f8a
94 N6a4ad4d82c6142ad84997be9abef55ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Genome, Human
96 rdf:type schema:DefinedTerm
97 N72269e83bafe4fc580dab27aa365cda2 schema:name readcube_id
98 schema:value e3b0b3b89dfc8160067f5f7bb163e0cd8503b38e30d0143fce5517503cd5e33d
99 rdf:type schema:PropertyValue
100 N88a391611e344eba9f50fedd8ceef1f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name DNA, Neoplasm
102 rdf:type schema:DefinedTerm
103 N8ae52cda8a01494b9b552d278da34480 schema:name pubmed_id
104 schema:value 20718989
105 rdf:type schema:PropertyValue
106 N935363d77e9a41ebbe5ba8b290a3d905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computer Simulation
108 rdf:type schema:DefinedTerm
109 Na3dd9e40202842189a7ffca2b412307f schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nb78fe6b84f484a5581153891c4f76505 schema:volumeNumber 11
112 rdf:type schema:PublicationVolume
113 Nd7a4cf84238a4d058f22379bcca1dc02 schema:name dimensions_id
114 schema:value pub.1047796464
115 rdf:type schema:PropertyValue
116 Ne70f7330b7a340d7a9c3296aceed0463 schema:name nlm_unique_id
117 schema:value 100965194
118 rdf:type schema:PropertyValue
119 Ne863e4b44ddc459ea0f084da5c77802b rdf:first sg:person.01024612701.33
120 rdf:rest rdf:nil
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-432
128 rdf:type schema:MonetaryGrant
129 sg:journal.1023786 schema:issn 1471-2105
130 schema:name BMC Bioinformatics
131 rdf:type schema:Periodical
132 sg:person.01024612701.33 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
133 schema:familyName Park
134 schema:givenName Peter J
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
136 rdf:type schema:Person
137 sg:person.01025726540.95 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
138 schema:familyName Xi
139 schema:givenName Ruibin
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025726540.95
141 rdf:type schema:Person
142 sg:person.01252725367.32 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
143 schema:familyName Luquette
144 schema:givenName Lovelace J
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252725367.32
146 rdf:type schema:Person
147 sg:person.07662266304.49 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
148 schema:familyName Kim
149 schema:givenName Tae-Min
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662266304.49
151 rdf:type schema:Person
152 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
153 https://doi.org/10.1038/nature03959
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ng.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
156 https://doi.org/10.1038/ng.437
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ng1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015362478
159 https://doi.org/10.1038/ng1215
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ng1569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013223130
162 https://doi.org/10.1038/ng1569
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010978328
165 https://doi.org/10.1038/ng754
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
168 https://doi.org/10.1038/nmeth.1276
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nmeth.f.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001704732
171 https://doi.org/10.1038/nmeth.f.256
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-10-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049575176
174 https://doi.org/10.1186/1471-2105-10-80
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
177 https://doi.org/10.1186/gb-2009-10-3-r25
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1074859834 schema:CreativeWork
180 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ygeno.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049637368
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1056/nejmra0803109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002500139
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1073/pnas.202610899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050518611
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/bioinformatics/bti611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013090615
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/biostatistics/kxh008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431182
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/hmg/ddg261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038614684
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gki643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215405
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.088633.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032076888
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.092981.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322821
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/gr.7.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083159139
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
207 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA
208 Department of Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, 02115, Boston, Massachusetts, USA
209 Harvard-MIT Health Sciences and Technology Informatics Program at Children's Hospital, 300 Longwood Ave., 02115, Boston, Massachusetts, USA
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
212 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 02115, Boston, Massachusetts, USA
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...