Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-κB signaling-induced gene expression responses in ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Shih Chi Peng, David Shan Hill Wong, Kai Che Tung, Yan Yu Chen, Chun Cheih Chao, Chien Hua Peng, Yung Jen Chuang, Chuan Yi Tang

ABSTRACT

BACKGROUND: Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli. RESULTS: We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-kappaB signaling pathway with the inflammatory gene regulatory responses because NF-kappaB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-kappaB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-alpha, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-kappaB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-kappaB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome. CONCLUSION: We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-kappaB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest. More... »

PAGES

308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-308

DOI

http://dx.doi.org/10.1186/1471-2105-11-308

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041106926

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20529327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "NF-kappa B", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Shih Chi", 
        "id": "sg:person.01366337452.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366337452.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Chemical Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "David Shan Hill", 
        "id": "sg:person.014134724075.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134724075.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Kai Che", 
        "id": "sg:person.01057117753.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057117753.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Chemical Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan Yu", 
        "id": "sg:person.01125233153.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125233153.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chao", 
        "givenName": "Chun Cheih", 
        "id": "sg:person.01273023430.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273023430.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Resource Center for Clinical Research, Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Chien Hua", 
        "id": "sg:person.01330443073.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330443073.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chuang", 
        "givenName": "Yung Jen", 
        "id": "sg:person.016515070435.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016515070435.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2172-8-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000129689", 
          "https://doi.org/10.1186/1471-2172-8-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.00656.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000220527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci11914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001563751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1165/ajrcmb.22.2.f178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002391025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002792804", 
          "https://doi.org/10.1186/1471-2164-7-210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2008.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003754002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2008.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003754002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006001458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718081", 
          "https://doi.org/10.1038/nrm2041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718081", 
          "https://doi.org/10.1038/nrm2041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.112.6_supplement.321s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007409189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.02579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009056266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2002.3024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011416932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0311503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011629299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0311503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011629299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2647(02)00019-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013803314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.231625398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200510155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017357193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1071914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018025859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2002.35.6.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018435369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018751425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2136632100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018982661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019962540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019962540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021470827", 
          "https://doi.org/10.1038/sj.onc.1209943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021470827", 
          "https://doi.org/10.1038/sj.onc.1209943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci11830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021551710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/9.13.3047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022238700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.immunol.16.1.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023386682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0933416100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023650314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2005.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025370545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2005.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025370545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2004.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026389780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.1998.00938.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026390392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027911236", 
          "https://doi.org/10.1038/nri910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027911236", 
          "https://doi.org/10.1038/nri910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027911236", 
          "https://doi.org/10.1038/nri910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028094971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/smim.2000.0210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029167661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1462-5822.2003.00314.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029341234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029557901", 
          "https://doi.org/10.1186/1471-2105-5-158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029912339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4906(03)00079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030590710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4906(03)00079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030590710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-3-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030797440", 
          "https://doi.org/10.1186/1471-2105-3-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m411471200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031970926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036183277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/stke.2003.171.re3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037227247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2567.2006.02344.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039019690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2005.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2004.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043406827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003677-200507000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003677-200507000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003677-200507000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6793-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044669779", 
          "https://doi.org/10.1186/1472-6793-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1203236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047772247", 
          "https://doi.org/10.1038/sj.onc.1203236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1203236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047772247", 
          "https://doi.org/10.1038/sj.onc.1203236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047828663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/9.23.6505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048175877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-27679-3_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048695931", 
          "https://doi.org/10.1007/3-540-27679-3_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049498409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m510085200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049666792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051076828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2004.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051662529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052046285", 
          "https://doi.org/10.1038/nri1374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052046285", 
          "https://doi.org/10.1038/nri1374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052185457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1198103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060407392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5287.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5400.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th05-12-0788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063290714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670452", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075168843", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1189/jlb.72.6.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075205416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075343252", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076835752", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077010745", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078189611", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083303195", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli.\nRESULTS: We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-kappaB signaling pathway with the inflammatory gene regulatory responses because NF-kappaB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-kappaB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-alpha, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-kappaB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-kappaB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome.\nCONCLUSION: We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-kappaB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-308", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-\u03baB signaling-induced gene expression responses in inflammation", 
    "pagination": "308", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3d1a25cefb7519d50d2d2f8d7f84c261caa08f57317444ec9b5444321e91821"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20529327"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-308"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041106926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-308", 
      "https://app.dimensions.ai/details/publication/pub.1041106926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-11-308"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-308'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-308'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-308'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-308'


 

This table displays all metadata directly associated to this object as RDF triples.

364 TRIPLES      21 PREDICATES      106 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-308 schema:about N20bad51f2f24444cb094eb15055343e6
2 N3ce7028cd67243a38f4cd085f1dd6ebe
3 N4c0e54ceeee844a6ab0926a0d34547a2
4 N8ef402116fd44b0bb4b670e19cb3735e
5 N98da1c690d50427786267bb6a3dbb963
6 Nc74909c740654282b1767cd5abd91df1
7 Nd16c695c147e488c8915a4f84b1fa941
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N1f67feb9c28f44889feae6a58e813d96
11 schema:citation sg:pub.10.1007/3-540-27679-3_34
12 sg:pub.10.1038/nature03985
13 sg:pub.10.1038/nri1374
14 sg:pub.10.1038/nri910
15 sg:pub.10.1038/nrm2041
16 sg:pub.10.1038/sj.onc.1203236
17 sg:pub.10.1038/sj.onc.1209943
18 sg:pub.10.1186/1471-2105-3-34
19 sg:pub.10.1186/1471-2105-5-158
20 sg:pub.10.1186/1471-2164-7-210
21 sg:pub.10.1186/1471-2172-8-1
22 sg:pub.10.1186/1472-6793-7-3
23 https://app.dimensions.ai/details/publication/pub.1074670452
24 https://app.dimensions.ai/details/publication/pub.1075168843
25 https://app.dimensions.ai/details/publication/pub.1075343252
26 https://app.dimensions.ai/details/publication/pub.1076835752
27 https://app.dimensions.ai/details/publication/pub.1077010745
28 https://app.dimensions.ai/details/publication/pub.1078189611
29 https://app.dimensions.ai/details/publication/pub.1083303195
30 https://doi.org/10.1002/bies.1154
31 https://doi.org/10.1002/bit.10854
32 https://doi.org/10.1006/jtbi.2002.3024
33 https://doi.org/10.1006/smim.2000.0210
34 https://doi.org/10.1016/j.biochi.2005.08.006
35 https://doi.org/10.1016/j.copbio.2005.05.003
36 https://doi.org/10.1016/j.jtbi.2004.01.001
37 https://doi.org/10.1016/j.jtbi.2004.10.020
38 https://doi.org/10.1016/j.jtbi.2004.11.011
39 https://doi.org/10.1016/j.plrev.2005.01.001
40 https://doi.org/10.1016/s0303-2647(02)00019-9
41 https://doi.org/10.1016/s1471-4906(03)00079-6
42 https://doi.org/10.1038/msb.2008.30
43 https://doi.org/10.1038/msb4100011
44 https://doi.org/10.1042/bst0311503
45 https://doi.org/10.1046/j.1365-2168.1998.00938.x
46 https://doi.org/10.1046/j.1462-5822.2003.00314.x
47 https://doi.org/10.1073/pnas.0933416100
48 https://doi.org/10.1073/pnas.2136632100
49 https://doi.org/10.1073/pnas.231625398
50 https://doi.org/10.1074/jbc.m411471200
51 https://doi.org/10.1074/jbc.m510085200
52 https://doi.org/10.1083/jcb.200510155
53 https://doi.org/10.1093/bioinformatics/16.8.707
54 https://doi.org/10.1093/bioinformatics/18.1.51
55 https://doi.org/10.1093/bioinformatics/btg313
56 https://doi.org/10.1093/bioinformatics/bth178
57 https://doi.org/10.1093/bioinformatics/btl396
58 https://doi.org/10.1093/bioinformatics/btm163
59 https://doi.org/10.1093/nar/9.13.3047
60 https://doi.org/10.1093/nar/9.23.6505
61 https://doi.org/10.1093/nar/gkj143
62 https://doi.org/10.1097/00003677-200507000-00003
63 https://doi.org/10.1101/gr.1198103
64 https://doi.org/10.1111/j.1365-2567.2006.02344.x
65 https://doi.org/10.1126/science.1071914
66 https://doi.org/10.1126/science.1113319
67 https://doi.org/10.1126/science.270.5235.467
68 https://doi.org/10.1126/science.274.5287.610
69 https://doi.org/10.1126/science.283.5400.381
70 https://doi.org/10.1126/stke.2003.171.re3
71 https://doi.org/10.1146/annurev.immunol.16.1.225
72 https://doi.org/10.1152/ajpregu.00656.2006
73 https://doi.org/10.1160/th05-12-0788
74 https://doi.org/10.1165/ajrcmb.22.2.f178
75 https://doi.org/10.1172/jci11830
76 https://doi.org/10.1172/jci11914
77 https://doi.org/10.1189/jlb.72.6.1190
78 https://doi.org/10.1242/jcs.02579
79 https://doi.org/10.1378/chest.112.6_supplement.321s
80 https://doi.org/10.5483/bmbrep.2002.35.6.537
81 schema:datePublished 2010-12
82 schema:datePublishedReg 2010-12-01
83 schema:description BACKGROUND: Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli. RESULTS: We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-kappaB signaling pathway with the inflammatory gene regulatory responses because NF-kappaB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-kappaB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-alpha, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-kappaB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-kappaB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome. CONCLUSION: We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-kappaB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.
84 schema:genre research_article
85 schema:inLanguage en
86 schema:isAccessibleForFree true
87 schema:isPartOf Nea44db8720054b42a6c73e2ffbf6c37c
88 Nfda48df2bc684343a7844688f23d302e
89 sg:journal.1023786
90 schema:name Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-κB signaling-induced gene expression responses in inflammation
91 schema:pagination 308
92 schema:productId N19935d825be84d6886a0c05c3a03c820
93 N3f2afeebe6a34620a8b355a2856c0b8d
94 N5e95ba59e2684d229e482071f29a5143
95 Nc32d0195b67741939e3493f02ebcec87
96 Nd55d7324c49c47fa9f4c77ee14f1234a
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041106926
98 https://doi.org/10.1186/1471-2105-11-308
99 schema:sdDatePublished 2019-04-11T10:19
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Ne06f87a4b4a24b6fafb856130fcd1fa3
102 schema:url https://link.springer.com/10.1186%2F1471-2105-11-308
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N11d766d1d7204efd97538ee7a644f23a rdf:first sg:person.01273023430.16
107 rdf:rest Nc209b3f8555b487ea4774489578e5b98
108 N182e89bf541a4596a393324b4dc3da69 schema:name Department of Resource Center for Clinical Research, Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan, ROC
109 rdf:type schema:Organization
110 N19935d825be84d6886a0c05c3a03c820 schema:name readcube_id
111 schema:value c3d1a25cefb7519d50d2d2f8d7f84c261caa08f57317444ec9b5444321e91821
112 rdf:type schema:PropertyValue
113 N1cceebcad6324f52abb1bedbcc3f5c45 rdf:first sg:person.01312526135.27
114 rdf:rest rdf:nil
115 N1f67feb9c28f44889feae6a58e813d96 rdf:first sg:person.01366337452.24
116 rdf:rest N8c322bff0aeb47cba89c9d861cbee7b2
117 N20bad51f2f24444cb094eb15055343e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Signal Transduction
119 rdf:type schema:DefinedTerm
120 N3ce7028cd67243a38f4cd085f1dd6ebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Gene Expression
122 rdf:type schema:DefinedTerm
123 N3f2afeebe6a34620a8b355a2856c0b8d schema:name dimensions_id
124 schema:value pub.1041106926
125 rdf:type schema:PropertyValue
126 N4c0e54ceeee844a6ab0926a0d34547a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name NF-kappa B
128 rdf:type schema:DefinedTerm
129 N5e95ba59e2684d229e482071f29a5143 schema:name pubmed_id
130 schema:value 20529327
131 rdf:type schema:PropertyValue
132 N705f7ad27789434c91079bdfca395fbb rdf:first sg:person.01125233153.04
133 rdf:rest N11d766d1d7204efd97538ee7a644f23a
134 N8c322bff0aeb47cba89c9d861cbee7b2 rdf:first sg:person.014134724075.20
135 rdf:rest Nd78e31e4727e467fbabb0d55eb2c4fa5
136 N8ef402116fd44b0bb4b670e19cb3735e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Computer Simulation
138 rdf:type schema:DefinedTerm
139 N98da1c690d50427786267bb6a3dbb963 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Genomics
141 rdf:type schema:DefinedTerm
142 Nc209b3f8555b487ea4774489578e5b98 rdf:first sg:person.01330443073.99
143 rdf:rest Nf426f5d553124c0798e46c097b6e8dc5
144 Nc32d0195b67741939e3493f02ebcec87 schema:name doi
145 schema:value 10.1186/1471-2105-11-308
146 rdf:type schema:PropertyValue
147 Nc74909c740654282b1767cd5abd91df1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Genome
149 rdf:type schema:DefinedTerm
150 Nd16c695c147e488c8915a4f84b1fa941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Inflammation
152 rdf:type schema:DefinedTerm
153 Nd55d7324c49c47fa9f4c77ee14f1234a schema:name nlm_unique_id
154 schema:value 100965194
155 rdf:type schema:PropertyValue
156 Nd78e31e4727e467fbabb0d55eb2c4fa5 rdf:first sg:person.01057117753.97
157 rdf:rest N705f7ad27789434c91079bdfca395fbb
158 Ne06f87a4b4a24b6fafb856130fcd1fa3 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 Nea44db8720054b42a6c73e2ffbf6c37c schema:volumeNumber 11
161 rdf:type schema:PublicationVolume
162 Nf426f5d553124c0798e46c097b6e8dc5 rdf:first sg:person.016515070435.25
163 rdf:rest N1cceebcad6324f52abb1bedbcc3f5c45
164 Nfda48df2bc684343a7844688f23d302e schema:issueNumber 1
165 rdf:type schema:PublicationIssue
166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biological Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
170 schema:name Genetics
171 rdf:type schema:DefinedTerm
172 sg:journal.1023786 schema:issn 1471-2105
173 schema:name BMC Bioinformatics
174 rdf:type schema:Periodical
175 sg:person.01057117753.97 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
176 schema:familyName Tung
177 schema:givenName Kai Che
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057117753.97
179 rdf:type schema:Person
180 sg:person.01125233153.04 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
181 schema:familyName Chen
182 schema:givenName Yan Yu
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125233153.04
184 rdf:type schema:Person
185 sg:person.01273023430.16 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
186 schema:familyName Chao
187 schema:givenName Chun Cheih
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273023430.16
189 rdf:type schema:Person
190 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
191 schema:familyName Tang
192 schema:givenName Chuan Yi
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
194 rdf:type schema:Person
195 sg:person.01330443073.99 schema:affiliation N182e89bf541a4596a393324b4dc3da69
196 schema:familyName Peng
197 schema:givenName Chien Hua
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330443073.99
199 rdf:type schema:Person
200 sg:person.01366337452.24 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
201 schema:familyName Peng
202 schema:givenName Shih Chi
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366337452.24
204 rdf:type schema:Person
205 sg:person.014134724075.20 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
206 schema:familyName Wong
207 schema:givenName David Shan Hill
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134724075.20
209 rdf:type schema:Person
210 sg:person.016515070435.25 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
211 schema:familyName Chuang
212 schema:givenName Yung Jen
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016515070435.25
214 rdf:type schema:Person
215 sg:pub.10.1007/3-540-27679-3_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048695931
216 https://doi.org/10.1007/3-540-27679-3_34
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature03985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010326831
219 https://doi.org/10.1038/nature03985
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nri1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052046285
222 https://doi.org/10.1038/nri1374
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nri910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027911236
225 https://doi.org/10.1038/nri910
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nrm2041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006718081
228 https://doi.org/10.1038/nrm2041
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/sj.onc.1203236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047772247
231 https://doi.org/10.1038/sj.onc.1203236
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/sj.onc.1209943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021470827
234 https://doi.org/10.1038/sj.onc.1209943
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1471-2105-3-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030797440
237 https://doi.org/10.1186/1471-2105-3-34
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1471-2105-5-158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029557901
240 https://doi.org/10.1186/1471-2105-5-158
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1471-2164-7-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002792804
243 https://doi.org/10.1186/1471-2164-7-210
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2172-8-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000129689
246 https://doi.org/10.1186/1471-2172-8-1
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/1472-6793-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044669779
249 https://doi.org/10.1186/1472-6793-7-3
250 rdf:type schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1074670452 schema:CreativeWork
252 https://app.dimensions.ai/details/publication/pub.1075168843 schema:CreativeWork
253 https://app.dimensions.ai/details/publication/pub.1075343252 schema:CreativeWork
254 https://app.dimensions.ai/details/publication/pub.1076835752 schema:CreativeWork
255 https://app.dimensions.ai/details/publication/pub.1077010745 schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1078189611 schema:CreativeWork
257 https://app.dimensions.ai/details/publication/pub.1083303195 schema:CreativeWork
258 https://doi.org/10.1002/bies.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029912339
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/bit.10854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047828663
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1006/jtbi.2002.3024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011416932
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1006/smim.2000.0210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029167661
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.biochi.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018751425
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.copbio.2005.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025370545
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.jtbi.2004.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043406827
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.jtbi.2004.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026389780
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.jtbi.2004.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051662529
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.plrev.2005.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062788
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/s0303-2647(02)00019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013803314
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/s1471-4906(03)00079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030590710
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1038/msb.2008.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003754002
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1038/msb4100011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019962540
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1042/bst0311503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011629299
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1046/j.1365-2168.1998.00938.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026390392
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1046/j.1462-5822.2003.00314.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029341234
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1073/pnas.0933416100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023650314
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1073/pnas.2136632100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018982661
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1073/pnas.231625398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648332
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1074/jbc.m411471200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031970926
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1074/jbc.m510085200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049666792
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1083/jcb.200510155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017357193
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1093/bioinformatics/16.8.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049498409
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1093/bioinformatics/18.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028094971
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1093/bioinformatics/btg313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051076828
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/bioinformatics/bth178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052185457
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1093/bioinformatics/btl396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036183277
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1093/bioinformatics/btm163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006001458
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1093/nar/9.13.3047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022238700
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1093/nar/9.23.6505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048175877
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1093/nar/gkj143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031585631
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1097/00003677-200507000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255409
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1101/gr.1198103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060407392
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1111/j.1365-2567.2006.02344.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039019690
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1126/science.1071914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018025859
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1126/science.1113319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452266
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1126/science.274.5287.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554585
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1126/science.283.5400.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563871
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1126/stke.2003.171.re3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037227247
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1146/annurev.immunol.16.1.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023386682
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1152/ajpregu.00656.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000220527
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1160/th05-12-0788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063290714
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1165/ajrcmb.22.2.f178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002391025
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1172/jci11830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021551710
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1172/jci11914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001563751
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1189/jlb.72.6.1190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075205416
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1242/jcs.02579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009056266
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1378/chest.112.6_supplement.321s schema:sameAs https://app.dimensions.ai/details/publication/pub.1007409189
357 rdf:type schema:CreativeWork
358 https://doi.org/10.5483/bmbrep.2002.35.6.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018435369
359 rdf:type schema:CreativeWork
360 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
361 schema:name Department of Chemical Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC
362 Department of Computer Science, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC
363 Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC
364 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...