WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04-29

AUTHORS

Fan Mo, Qun Mo, Yuanyuan Chen, David R Goodlett, Leroy Hood, Gilbert S Omenn, Song Li, Biaoyang Lin

ABSTRACT

BackgroundQuantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.ResultsWe developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline.ConclusionsWe showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant. More... »

PAGES

219

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-219

DOI

http://dx.doi.org/10.1186/1471-2105-11-219

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026684021

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20429928


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isotope Labeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "Fan", 
        "id": "sg:person.0637174517.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637174517.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "Qun", 
        "id": "sg:person.013061112105.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061112105.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yuanyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodlett", 
        "givenName": "David R", 
        "id": "sg:person.01044126157.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute for Systems Biology, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "The Institute for Systems Biology, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hood", 
        "givenName": "Leroy", 
        "id": "sg:person.016174641237.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Computational Medicine and Biology, University of Michigan, 48109, Ann Arbor, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Center for Computational Medicine and Biology, University of Michigan, 48109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omenn", 
        "givenName": "Gilbert S", 
        "id": "sg:person.013417635337.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Song", 
        "id": "sg:person.016612127263.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612127263.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Urology, University of Washington, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China", 
            "Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA", 
            "Dept. of Urology, University of Washington, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Biaoyang", 
        "id": "sg:person.0714017564.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714017564.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2004.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043334140", 
          "https://doi.org/10.1016/j.jasms.2004.11.014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036375531", 
          "https://doi.org/10.1186/1471-2105-9-504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004679205", 
          "https://doi.org/10.1038/nchembio736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041575797", 
          "https://doi.org/10.1186/1471-2105-10-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890324", 
          "https://doi.org/10.1186/1471-2105-9-529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-6-145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038672944", 
          "https://doi.org/10.1186/1471-2164-6-145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031018596", 
          "https://doi.org/10.1038/nmeth.1195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045185534", 
          "https://doi.org/10.1186/1471-2105-9-163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4324-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705030", 
          "https://doi.org/10.1007/978-1-4612-4324-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049469421", 
          "https://doi.org/10.1038/nbt.1511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1001-946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029399357", 
          "https://doi.org/10.1038/nbt1001-946"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-29", 
    "datePublishedReg": "2010-04-29", 
    "description": "BackgroundQuantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.ResultsWe developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline.ConclusionsWe showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-11-219", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4915134", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8113199", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699165", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "discrete wavelet transform", 
      "smoothing filters", 
      "traditional smoothing filters", 
      "novel discrete wavelet transform", 
      "average filter", 
      "Savitzky-Golay filter", 
      "wavelet transform", 
      "filter", 
      "mixed ratio", 
      "Gaussian filter", 
      "wavelet theory", 
      "peak detection", 
      "adaptive algorithm", 
      "noise", 
      "true peak", 
      "pipeline", 
      "technology", 
      "transform", 
      "quantification", 
      "peak", 
      "signal threshold", 
      "complex samples", 
      "quantification technology", 
      "order", 
      "algorithm", 
      "ratio", 
      "software", 
      "more complex samples", 
      "detection", 
      "limitations", 
      "approach", 
      "samples", 
      "data", 
      "theory", 
      "threshold", 
      "analysis", 
      "peptide quantification", 
      "Trans-Proteomic Pipeline", 
      "yeast extract", 
      "differential stable isotope labeling", 
      "stable isotope labeling", 
      "mass spectrometric data", 
      "accurate peptide quantification", 
      "program", 
      "quantitative proteomic analysis", 
      "proteomic technologies", 
      "quantitative proteomics", 
      "isotope labeling", 
      "spectrometric data", 
      "definition", 
      "MS peaks", 
      "MS", 
      "proteomics analysis pipeline", 
      "ovarian cancer cells", 
      "quantification software", 
      "proteomic analysis", 
      "proteomic quantification", 
      "Express Edition", 
      "analysis pipeline", 
      "ConclusionsWe", 
      "more protein", 
      "cancer cells", 
      "cells", 
      "protein", 
      "proteomics", 
      "labeling", 
      "extract", 
      "documentation", 
      "ResultsWe", 
      "edition", 
      "websites"
    ], 
    "name": "WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis", 
    "pagination": "219", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026684021"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-219"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20429928"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-219", 
      "https://app.dimensions.ai/details/publication/pub.1026684021"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_527.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-11-219"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-219'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-219'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-219'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-219'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      115 URIs      95 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-219 schema:about N1da9f11668044f49bcca4861801de1c6
2 N6513f35b85b249fe8f78cbc6dae6bfed
3 N6549708a2536455892fe8acf428c12c2
4 N9ab1f7b9a85e42fc8d0649561aead1ca
5 Nc488b5c87afa48e0b806baa436063f56
6 Ne7732ff76b2642cfa7b06f5655d4e0f9
7 Nfb22015200154767b06b8ded21a9f2b3
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author Nd9790ee69f734a208a4c1a32ad264436
11 schema:citation sg:pub.10.1007/978-1-4612-4324-3
12 sg:pub.10.1016/j.jasms.2004.11.014
13 sg:pub.10.1038/nature01511
14 sg:pub.10.1038/nbt.1511
15 sg:pub.10.1038/nbt1001-946
16 sg:pub.10.1038/nchembio736
17 sg:pub.10.1038/nmeth.1195
18 sg:pub.10.1186/1471-2105-10-4
19 sg:pub.10.1186/1471-2105-9-163
20 sg:pub.10.1186/1471-2105-9-504
21 sg:pub.10.1186/1471-2105-9-529
22 sg:pub.10.1186/1471-2164-6-145
23 schema:datePublished 2010-04-29
24 schema:datePublishedReg 2010-04-29
25 schema:description BackgroundQuantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.ResultsWe developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source proteomics analysis pipeline.ConclusionsWe showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N3354869a29074f0bb81e92cda252702f
29 Nb5d4298d28f441f8b769ab1edab2a0fc
30 sg:journal.1023786
31 schema:keywords ConclusionsWe
32 Express Edition
33 Gaussian filter
34 MS
35 MS peaks
36 ResultsWe
37 Savitzky-Golay filter
38 Trans-Proteomic Pipeline
39 accurate peptide quantification
40 adaptive algorithm
41 algorithm
42 analysis
43 analysis pipeline
44 approach
45 average filter
46 cancer cells
47 cells
48 complex samples
49 data
50 definition
51 detection
52 differential stable isotope labeling
53 discrete wavelet transform
54 documentation
55 edition
56 extract
57 filter
58 isotope labeling
59 labeling
60 limitations
61 mass spectrometric data
62 mixed ratio
63 more complex samples
64 more protein
65 noise
66 novel discrete wavelet transform
67 order
68 ovarian cancer cells
69 peak
70 peak detection
71 peptide quantification
72 pipeline
73 program
74 protein
75 proteomic analysis
76 proteomic quantification
77 proteomic technologies
78 proteomics
79 proteomics analysis pipeline
80 quantification
81 quantification software
82 quantification technology
83 quantitative proteomic analysis
84 quantitative proteomics
85 ratio
86 samples
87 signal threshold
88 smoothing filters
89 software
90 spectrometric data
91 stable isotope labeling
92 technology
93 theory
94 threshold
95 traditional smoothing filters
96 transform
97 true peak
98 wavelet theory
99 wavelet transform
100 websites
101 yeast extract
102 schema:name WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis
103 schema:pagination 219
104 schema:productId N1cd448e9a8274997a528c35a0beedd32
105 N67f52d19d6de41f3825771cf72c78d93
106 Nfd68f94d9795420eadfb2e388881cc8a
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026684021
108 https://doi.org/10.1186/1471-2105-11-219
109 schema:sdDatePublished 2022-09-02T15:54
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N1cf0f533046c4bb79b5a48780dd04a65
112 schema:url https://doi.org/10.1186/1471-2105-11-219
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N1cd448e9a8274997a528c35a0beedd32 schema:name doi
117 schema:value 10.1186/1471-2105-11-219
118 rdf:type schema:PropertyValue
119 N1cf0f533046c4bb79b5a48780dd04a65 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N1da9f11668044f49bcca4861801de1c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Proteins
123 rdf:type schema:DefinedTerm
124 N2b39a9819cee452bbe6b1466e6a4fe21 schema:affiliation grid-institutes:grid.13402.34
125 schema:familyName Chen
126 schema:givenName Yuanyuan
127 rdf:type schema:Person
128 N3354869a29074f0bb81e92cda252702f schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 N5c644361053a4e31842d722e2dd38230 rdf:first sg:person.016174641237.97
131 rdf:rest Nf44cf5dc4b73400d8b5eb1a6eeff177b
132 N6513f35b85b249fe8f78cbc6dae6bfed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Proteomics
134 rdf:type schema:DefinedTerm
135 N6549708a2536455892fe8acf428c12c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Isotope Labeling
137 rdf:type schema:DefinedTerm
138 N67f52d19d6de41f3825771cf72c78d93 schema:name dimensions_id
139 schema:value pub.1026684021
140 rdf:type schema:PropertyValue
141 N788f5ccaecbf4584a6c9d8aa7c66b1e4 rdf:first sg:person.0714017564.26
142 rdf:rest rdf:nil
143 N920018c38e7e4db788f62b58a5467751 rdf:first sg:person.013061112105.21
144 rdf:rest Nbd5a9a5e63b94e66a31af4b764c4a872
145 N9ab1f7b9a85e42fc8d0649561aead1ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Algorithms
147 rdf:type schema:DefinedTerm
148 Na25c4495c4a040258bd2f5b8ae121383 rdf:first sg:person.016612127263.23
149 rdf:rest N788f5ccaecbf4584a6c9d8aa7c66b1e4
150 Nb5d4298d28f441f8b769ab1edab2a0fc schema:volumeNumber 11
151 rdf:type schema:PublicationVolume
152 Nbd5a9a5e63b94e66a31af4b764c4a872 rdf:first N2b39a9819cee452bbe6b1466e6a4fe21
153 rdf:rest Ndd9fafabbb3a4722a26b86549466d4b3
154 Nc488b5c87afa48e0b806baa436063f56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Proteome
156 rdf:type schema:DefinedTerm
157 Nd9790ee69f734a208a4c1a32ad264436 rdf:first sg:person.0637174517.88
158 rdf:rest N920018c38e7e4db788f62b58a5467751
159 Ndd9fafabbb3a4722a26b86549466d4b3 rdf:first sg:person.01044126157.13
160 rdf:rest N5c644361053a4e31842d722e2dd38230
161 Ne7732ff76b2642cfa7b06f5655d4e0f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Mass Spectrometry
163 rdf:type schema:DefinedTerm
164 Nf44cf5dc4b73400d8b5eb1a6eeff177b rdf:first sg:person.013417635337.41
165 rdf:rest Na25c4495c4a040258bd2f5b8ae121383
166 Nfb22015200154767b06b8ded21a9f2b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Software
168 rdf:type schema:DefinedTerm
169 Nfd68f94d9795420eadfb2e388881cc8a schema:name pubmed_id
170 schema:value 20429928
171 rdf:type schema:PropertyValue
172 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
173 schema:name Information and Computing Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
176 schema:name Artificial Intelligence and Image Processing
177 rdf:type schema:DefinedTerm
178 sg:grant.2699165 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-219
179 rdf:type schema:MonetaryGrant
180 sg:grant.4915134 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-219
181 rdf:type schema:MonetaryGrant
182 sg:grant.8113199 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-219
183 rdf:type schema:MonetaryGrant
184 sg:journal.1023786 schema:issn 1471-2105
185 schema:name BMC Bioinformatics
186 schema:publisher Springer Nature
187 rdf:type schema:Periodical
188 sg:person.01044126157.13 schema:affiliation grid-institutes:grid.34477.33
189 schema:familyName Goodlett
190 schema:givenName David R
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13
192 rdf:type schema:Person
193 sg:person.013061112105.21 schema:affiliation grid-institutes:grid.13402.34
194 schema:familyName Mo
195 schema:givenName Qun
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061112105.21
197 rdf:type schema:Person
198 sg:person.013417635337.41 schema:affiliation grid-institutes:grid.214458.e
199 schema:familyName Omenn
200 schema:givenName Gilbert S
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41
202 rdf:type schema:Person
203 sg:person.016174641237.97 schema:affiliation grid-institutes:grid.64212.33
204 schema:familyName Hood
205 schema:givenName Leroy
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97
207 rdf:type schema:Person
208 sg:person.016612127263.23 schema:affiliation grid-institutes:grid.13402.34
209 schema:familyName Li
210 schema:givenName Song
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016612127263.23
212 rdf:type schema:Person
213 sg:person.0637174517.88 schema:affiliation grid-institutes:grid.13402.34
214 schema:familyName Mo
215 schema:givenName Fan
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637174517.88
217 rdf:type schema:Person
218 sg:person.0714017564.26 schema:affiliation grid-institutes:grid.34477.33
219 schema:familyName Lin
220 schema:givenName Biaoyang
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714017564.26
222 rdf:type schema:Person
223 sg:pub.10.1007/978-1-4612-4324-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705030
224 https://doi.org/10.1007/978-1-4612-4324-3
225 rdf:type schema:CreativeWork
226 sg:pub.10.1016/j.jasms.2004.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043334140
227 https://doi.org/10.1016/j.jasms.2004.11.014
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
230 https://doi.org/10.1038/nature01511
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nbt.1511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049469421
233 https://doi.org/10.1038/nbt.1511
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nbt1001-946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399357
236 https://doi.org/10.1038/nbt1001-946
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nchembio736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004679205
239 https://doi.org/10.1038/nchembio736
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nmeth.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031018596
242 https://doi.org/10.1038/nmeth.1195
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1471-2105-10-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575797
245 https://doi.org/10.1186/1471-2105-10-4
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1471-2105-9-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045185534
248 https://doi.org/10.1186/1471-2105-9-163
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2105-9-504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036375531
251 https://doi.org/10.1186/1471-2105-9-504
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-9-529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890324
254 https://doi.org/10.1186/1471-2105-9-529
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1471-2164-6-145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038672944
257 https://doi.org/10.1186/1471-2164-6-145
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.13402.34 schema:alternateName Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China
260 Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China
261 schema:name Department of Mathematics, College of Science, Zhejiang University Yuquan Campus, 38 Zheda Road, 310027, Hangzhou, China
262 Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China
263 rdf:type schema:Organization
264 grid-institutes:grid.214458.e schema:alternateName Center for Computational Medicine and Biology, University of Michigan, 48109, Ann Arbor, MI, USA
265 schema:name Center for Computational Medicine and Biology, University of Michigan, 48109, Ann Arbor, MI, USA
266 rdf:type schema:Organization
267 grid-institutes:grid.34477.33 schema:alternateName Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
268 Dept. of Urology, University of Washington, 98195, Seattle, WA, USA
269 schema:name Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
270 Dept. of Urology, University of Washington, 98195, Seattle, WA, USA
271 Swedish Neuroscience Institute, Swedish Medical Center, 98122, Seattle, WA, USA
272 Systems Biology Division, Zhejiang-California Nanosystems Institute (ZCNI) of Zhejiang University, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, 310029, Hangzhou, China
273 rdf:type schema:Organization
274 grid-institutes:grid.64212.33 schema:alternateName The Institute for Systems Biology, Seattle, Washington, USA
275 schema:name The Institute for Systems Biology, Seattle, Washington, USA
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...