ProbABEL package for genome-wide association analysis of imputed data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Yurii S Aulchenko, Maksim V Struchalin, Cornelia M van Duijn

ABSTRACT

BACKGROUND: Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account. RESULTS: We developed the ProbABEL software package for the analysis of genome-wide imputed SNP data and quantitative, binary, and time-till-event outcomes under linear, logistic, and Cox proportional hazards models, respectively. For quantitative traits, the package also implements a fast two-step mixed model-based score test for association in samples with differential relationships, facilitating analysis in family-based studies, studies performed in human genetically isolated populations and outbred animal populations. CONCLUSIONS: ProbABEL package provides fast efficient way to analyze imputed data in genome-wide context and will facilitate future identification of complex trait loci. More... »

PAGES

134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-134

DOI

http://dx.doi.org/10.1186/1471-2105-11-134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018022915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20233392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Cytology and Genetics", 
          "id": "https://www.grid.ac/institutes/grid.418953.2", 
          "name": [
            "Department of Epidemiology, Erasmus MC, Postbus 2040, 3000, Rotterdam, CA, The Netherlands", 
            "Institute of Cytology and Genetics SD RAS, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aulchenko", 
        "givenName": "Yurii S", 
        "id": "sg:person.01231510236.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231510236.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Epidemiology, Erasmus MC, Postbus 2040, 3000, Rotterdam, CA, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struchalin", 
        "givenName": "Maksim V", 
        "id": "sg:person.01154351677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154351677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Epidemiology, Erasmus MC, Postbus 2040, 3000, Rotterdam, CA, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Duijn", 
        "givenName": "Cornelia M", 
        "id": "sg:person.011675454737.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675454737.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0901249106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000358939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-009-0686-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003274381", 
          "https://doi.org/10.1007/s00439-009-0686-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-009-0686-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003274381", 
          "https://doi.org/10.1007/s00439-009-0686-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-009-0686-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003274381", 
          "https://doi.org/10.1007/s00439-009-0686-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000101422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004482851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010716249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012097484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.075614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012097484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014364350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-10-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015834532", 
          "https://doi.org/10.1186/1471-2156-10-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016410039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-1809.2005.00162.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018320600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.9.081307.164242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018499775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903103106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/521580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020324021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026068581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031184798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-sts307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033538495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035781360", 
          "https://doi.org/10.1038/ng1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddp296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039127819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041343500", 
          "https://doi.org/10.1038/ng786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041343500", 
          "https://doi.org/10.1038/ng786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045819630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046979341", 
          "https://doi.org/10.1038/ng2088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048156540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v011.i10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640376"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account.\nRESULTS: We developed the ProbABEL software package for the analysis of genome-wide imputed SNP data and quantitative, binary, and time-till-event outcomes under linear, logistic, and Cox proportional hazards models, respectively. For quantitative traits, the package also implements a fast two-step mixed model-based score test for association in samples with differential relationships, facilitating analysis in family-based studies, studies performed in human genetically isolated populations and outbred animal populations.\nCONCLUSIONS: ProbABEL package provides fast efficient way to analyze imputed data in genome-wide context and will facilitate future identification of complex trait loci.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-134", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4109438", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "ProbABEL package for genome-wide association analysis of imputed data", 
    "pagination": "134", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55dfb28445cb7366dd5e6339949242b920de6df29a39c3a3cfbadf601ac0efb5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20233392"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-134"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018022915"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-134", 
      "https://app.dimensions.ai/details/publication/pub.1018022915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-11-134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-134'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      64 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-134 schema:about N0d64c1bf500f4cf4862c08c0fc9ad8bf
2 N31b97ebd888146eb879b8f16abfe0880
3 N5e50dece85904b64b0ff76f1e210fa9f
4 N6c0f20c46c38424386a74dbf92e868ac
5 Na122bebe905644edafe7c2889a207df5
6 Nc6560571f24e4825ac34b52f31ba1fa1
7 Nfce25fbdd04e4f1090733e81c6a89db4
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author Naff37be9a8384ac6a7b747a2a9469168
11 schema:citation sg:pub.10.1007/s00439-009-0686-x
12 sg:pub.10.1038/ng1702
13 sg:pub.10.1038/ng1847
14 sg:pub.10.1038/ng2088
15 sg:pub.10.1038/ng786
16 sg:pub.10.1186/1471-2156-10-27
17 https://doi.org/10.1016/j.ajhg.2008.06.008
18 https://doi.org/10.1016/j.ajhg.2009.02.001
19 https://doi.org/10.1046/j.1469-1809.2005.00162.x
20 https://doi.org/10.1073/pnas.0901249106
21 https://doi.org/10.1073/pnas.0903103106
22 https://doi.org/10.1086/519795
23 https://doi.org/10.1086/521580
24 https://doi.org/10.1093/bioinformatics/bth331
25 https://doi.org/10.1093/bioinformatics/btm108
26 https://doi.org/10.1093/hmg/ddp296
27 https://doi.org/10.1111/j.0006-341x.1999.00997.x
28 https://doi.org/10.1146/annurev.genom.9.081307.164242
29 https://doi.org/10.1159/000101422
30 https://doi.org/10.1214/09-sts307
31 https://doi.org/10.1371/journal.pgen.0030114
32 https://doi.org/10.1371/journal.pgen.1000529
33 https://doi.org/10.1371/journal.pgen.1000539
34 https://doi.org/10.1371/journal.pone.0001274
35 https://doi.org/10.1371/journal.pone.0003475
36 https://doi.org/10.1534/genetics.107.075614
37 https://doi.org/10.18637/jss.v011.i10
38 https://doi.org/10.2307/1912934
39 schema:datePublished 2010-12
40 schema:datePublishedReg 2010-12-01
41 schema:description BACKGROUND: Over the last few years, genome-wide association (GWA) studies became a tool of choice for the identification of loci associated with complex traits. Currently, imputed single nucleotide polymorphisms (SNP) data are frequently used in GWA analyzes. Correct analysis of imputed data calls for the implementation of specific methods which take genotype imputation uncertainty into account. RESULTS: We developed the ProbABEL software package for the analysis of genome-wide imputed SNP data and quantitative, binary, and time-till-event outcomes under linear, logistic, and Cox proportional hazards models, respectively. For quantitative traits, the package also implements a fast two-step mixed model-based score test for association in samples with differential relationships, facilitating analysis in family-based studies, studies performed in human genetically isolated populations and outbred animal populations. CONCLUSIONS: ProbABEL package provides fast efficient way to analyze imputed data in genome-wide context and will facilitate future identification of complex trait loci.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Nc38f6644cf9d46e291bd92bd23c33cd1
46 Nf344aa65ba2047f2b9cff26d58dc4277
47 sg:journal.1023786
48 schema:name ProbABEL package for genome-wide association analysis of imputed data
49 schema:pagination 134
50 schema:productId N279e88bb54a44ef3ad30052222d7a1f9
51 N33f8f1c9829c4b62a99bd994ed53010d
52 Na49c217723324d17884ffadfae4f2c56
53 Nac4a922f4f6846fa8703099d3b2b4091
54 Nb55f786013c74435809b896eb5a65a79
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018022915
56 https://doi.org/10.1186/1471-2105-11-134
57 schema:sdDatePublished 2019-04-11T09:57
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N4775a617b97c4657a0a11fec172ffd08
60 schema:url https://link.springer.com/10.1186%2F1471-2105-11-134
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0d64c1bf500f4cf4862c08c0fc9ad8bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Models, Genetic
66 rdf:type schema:DefinedTerm
67 N279e88bb54a44ef3ad30052222d7a1f9 schema:name nlm_unique_id
68 schema:value 100965194
69 rdf:type schema:PropertyValue
70 N29350f75c6784cd7b5a69c2e9e1b5bd1 rdf:first sg:person.011675454737.09
71 rdf:rest rdf:nil
72 N31b97ebd888146eb879b8f16abfe0880 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Genotype
74 rdf:type schema:DefinedTerm
75 N33f8f1c9829c4b62a99bd994ed53010d schema:name pubmed_id
76 schema:value 20233392
77 rdf:type schema:PropertyValue
78 N4775a617b97c4657a0a11fec172ffd08 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N5e50dece85904b64b0ff76f1e210fa9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Humans
82 rdf:type schema:DefinedTerm
83 N6c0f20c46c38424386a74dbf92e868ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Software
85 rdf:type schema:DefinedTerm
86 Na122bebe905644edafe7c2889a207df5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Polymorphism, Single Nucleotide
88 rdf:type schema:DefinedTerm
89 Na49c217723324d17884ffadfae4f2c56 schema:name doi
90 schema:value 10.1186/1471-2105-11-134
91 rdf:type schema:PropertyValue
92 Na896abea12bc4f488d5a715eedb7d92b rdf:first sg:person.01154351677.43
93 rdf:rest N29350f75c6784cd7b5a69c2e9e1b5bd1
94 Nac4a922f4f6846fa8703099d3b2b4091 schema:name readcube_id
95 schema:value 55dfb28445cb7366dd5e6339949242b920de6df29a39c3a3cfbadf601ac0efb5
96 rdf:type schema:PropertyValue
97 Naff37be9a8384ac6a7b747a2a9469168 rdf:first sg:person.01231510236.78
98 rdf:rest Na896abea12bc4f488d5a715eedb7d92b
99 Nb55f786013c74435809b896eb5a65a79 schema:name dimensions_id
100 schema:value pub.1018022915
101 rdf:type schema:PropertyValue
102 Nc38f6644cf9d46e291bd92bd23c33cd1 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Nc6560571f24e4825ac34b52f31ba1fa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Genome-Wide Association Study
106 rdf:type schema:DefinedTerm
107 Nf344aa65ba2047f2b9cff26d58dc4277 schema:volumeNumber 11
108 rdf:type schema:PublicationVolume
109 Nfce25fbdd04e4f1090733e81c6a89db4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Quantitative Trait Loci
111 rdf:type schema:DefinedTerm
112 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biological Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
116 schema:name Genetics
117 rdf:type schema:DefinedTerm
118 sg:grant.4109438 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-11-134
119 rdf:type schema:MonetaryGrant
120 sg:journal.1023786 schema:issn 1471-2105
121 schema:name BMC Bioinformatics
122 rdf:type schema:Periodical
123 sg:person.01154351677.43 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
124 schema:familyName Struchalin
125 schema:givenName Maksim V
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154351677.43
127 rdf:type schema:Person
128 sg:person.011675454737.09 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
129 schema:familyName van Duijn
130 schema:givenName Cornelia M
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675454737.09
132 rdf:type schema:Person
133 sg:person.01231510236.78 schema:affiliation https://www.grid.ac/institutes/grid.418953.2
134 schema:familyName Aulchenko
135 schema:givenName Yurii S
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231510236.78
137 rdf:type schema:Person
138 sg:pub.10.1007/s00439-009-0686-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003274381
139 https://doi.org/10.1007/s00439-009-0686-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ng1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035781360
142 https://doi.org/10.1038/ng1702
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
145 https://doi.org/10.1038/ng1847
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
148 https://doi.org/10.1038/ng2088
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/ng786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041343500
151 https://doi.org/10.1038/ng786
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1471-2156-10-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015834532
154 https://doi.org/10.1186/1471-2156-10-27
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ajhg.2008.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010716249
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ajhg.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640071
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1046/j.1469-1809.2005.00162.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018320600
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.0901249106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000358939
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.0903103106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299353
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1086/521580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020324021
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/bth331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048156540
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/btm108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184798
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/hmg/ddp296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039127819
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1146/annurev.genom.9.081307.164242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018499775
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1159/000101422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004482851
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1214/09-sts307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033538495
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pgen.0030114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014364350
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1371/journal.pgen.1000539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026068581
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pone.0001274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016410039
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0003475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045819630
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1534/genetics.107.075614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012097484
195 rdf:type schema:CreativeWork
196 https://doi.org/10.18637/jss.v011.i10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672172
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2307/1912934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640376
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.418953.2 schema:alternateName Institute of Cytology and Genetics
201 schema:name Department of Epidemiology, Erasmus MC, Postbus 2040, 3000, Rotterdam, CA, The Netherlands
202 Institute of Cytology and Genetics SD RAS, 630090, Novosibirsk, Russia
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
205 schema:name Department of Epidemiology, Erasmus MC, Postbus 2040, 3000, Rotterdam, CA, The Netherlands
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...