MapMi: automated mapping of microRNA loci View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

José Afonso Guerra-Assunção, Anton J Enright

ABSTRACT

BACKGROUND: A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species. We sought to address this problem by developing a computational system for automated mapping of miRNAs within and across species. Given the sequence of a known miRNA in one species it is relatively straightforward to determine likely loci of that miRNA in other species. Our primary goal is not the discovery of novel miRNAs but the mapping of validated miRNAs in one species to their most likely orthologues in other species. RESULTS: We present MapMi, a computational system for automated miRNA mapping across and within species. This method has a sensitivity of 92.20% and a specificity of 97.73%. Using the latest release (v14) of miRBase, we obtained 10,944 unannotated potential miRNAs when MapMi was applied to all 21 species in Ensembl Metazoa release 2 and 46 species from Ensembl release 55. CONCLUSIONS: The pipeline and an associated web-server for mapping miRNAs are freely available on http://www.ebi.ac.uk/enright-srv/MapMi/. In addition precomputed miRNA mappings of miRBase miRNAs across a large number of species are provided. More... »

PAGES

133

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-133

DOI

http://dx.doi.org/10.1186/1471-2105-11-133

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014867336

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20233390


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Gulbenkian de Ci\u00eancia", 
          "id": "https://www.grid.ac/institutes/grid.418346.c", 
          "name": [
            "European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK", 
            "PDBC, Instituto Gulbenkian de Ci\u00eancia, Apartado 14, 2781-901, Oeiras, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerra-Assun\u00e7\u00e3o", 
        "givenName": "Jos\u00e9 Afonso", 
        "id": "sg:person.01016455437.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016455437.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enright", 
        "givenName": "Anton J", 
        "id": "sg:person.0765550040.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkp145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001051929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001172095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001732623", 
          "https://doi.org/10.1038/nrg2455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003261211", 
          "https://doi.org/10.1186/1471-2105-9-192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1122689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004440782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007189923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009144880", 
          "https://doi.org/10.1186/1471-2105-9-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009144880", 
          "https://doi.org/10.1186/1471-2105-9-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009902558", 
          "https://doi.org/10.1038/nrm2632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2005.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015856420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019176478", 
          "https://doi.org/10.1186/1471-2164-9-457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019608078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019608078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020178588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.02073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021158939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031994102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00818163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495505", 
          "https://doi.org/10.1007/bf00818163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036963638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038202091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35040556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493395", 
          "https://doi.org/10.1038/35040556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35040556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493395", 
          "https://doi.org/10.1038/35040556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2146903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042024352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044035298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045454894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150390235520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369386"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species. We sought to address this problem by developing a computational system for automated mapping of miRNAs within and across species. Given the sequence of a known miRNA in one species it is relatively straightforward to determine likely loci of that miRNA in other species. Our primary goal is not the discovery of novel miRNAs but the mapping of validated miRNAs in one species to their most likely orthologues in other species.\nRESULTS: We present MapMi, a computational system for automated miRNA mapping across and within species. This method has a sensitivity of 92.20% and a specificity of 97.73%. Using the latest release (v14) of miRBase, we obtained 10,944 unannotated potential miRNAs when MapMi was applied to all 21 species in Ensembl Metazoa release 2 and 46 species from Ensembl release 55.\nCONCLUSIONS: The pipeline and an associated web-server for mapping miRNAs are freely available on http://www.ebi.ac.uk/enright-srv/MapMi/. In addition precomputed miRNA mappings of miRBase miRNAs across a large number of species are provided.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-133", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "MapMi: automated mapping of microRNA loci", 
    "pagination": "133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46d5737015f37ebfb8373e9f30e635f0be2b09050ee77a8ec6b359b223abfe27"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20233390"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-133"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014867336"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-133", 
      "https://app.dimensions.ai/details/publication/pub.1014867336"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2105-11-133"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-133'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-133'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-133'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-133'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      61 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-133 schema:about N2b1ea9ab59284a17ae5c2575a3f34a8f
2 N3e8a6665d6ce4462a351521d8647d585
3 N644a9dbb5556496eb0c4cb4a4cfd1006
4 N7b2af1fd4e5846cd8b571b47608221ff
5 N8ff54cd40d384a8aaa22a1250e0261d8
6 Ndfdf9140a2f94887abd48eb2e7b613b3
7 Nf26dcf83e1fc4242b9fb56bbe9fc402b
8 Nfdf205774aa949e886a7cedcf832efa4
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N9229461535094057943c758fdfc6d4bb
12 schema:citation sg:pub.10.1007/bf00818163
13 sg:pub.10.1038/35040556
14 sg:pub.10.1038/nrg2455
15 sg:pub.10.1038/nrm2632
16 sg:pub.10.1186/1471-2105-9-192
17 sg:pub.10.1186/1471-2105-9-39
18 sg:pub.10.1186/1471-2164-9-457
19 sg:pub.10.1186/gb-2009-10-3-r25
20 https://doi.org/10.1016/j.cell.2007.04.040
21 https://doi.org/10.1016/j.ydbio.2005.10.036
22 https://doi.org/10.1080/10635150390235520
23 https://doi.org/10.1093/bioinformatics/btn235
24 https://doi.org/10.1093/bioinformatics/btp033
25 https://doi.org/10.1093/bioinformatics/btp107
26 https://doi.org/10.1093/nar/gkh340
27 https://doi.org/10.1093/nar/gkm952
28 https://doi.org/10.1093/nar/gkn258
29 https://doi.org/10.1093/nar/gkn707
30 https://doi.org/10.1093/nar/gkn828
31 https://doi.org/10.1093/nar/gkp145
32 https://doi.org/10.1126/science.1122689
33 https://doi.org/10.1242/dev.02073
34 https://doi.org/10.1261/rna.2146903
35 https://doi.org/10.1534/genetics.107.072553
36 schema:datePublished 2010-12
37 schema:datePublishedReg 2010-12-01
38 schema:description BACKGROUND: A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species. We sought to address this problem by developing a computational system for automated mapping of miRNAs within and across species. Given the sequence of a known miRNA in one species it is relatively straightforward to determine likely loci of that miRNA in other species. Our primary goal is not the discovery of novel miRNAs but the mapping of validated miRNAs in one species to their most likely orthologues in other species. RESULTS: We present MapMi, a computational system for automated miRNA mapping across and within species. This method has a sensitivity of 92.20% and a specificity of 97.73%. Using the latest release (v14) of miRBase, we obtained 10,944 unannotated potential miRNAs when MapMi was applied to all 21 species in Ensembl Metazoa release 2 and 46 species from Ensembl release 55. CONCLUSIONS: The pipeline and an associated web-server for mapping miRNAs are freely available on http://www.ebi.ac.uk/enright-srv/MapMi/. In addition precomputed miRNA mappings of miRBase miRNAs across a large number of species are provided.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N34a52ca030c34ecbb49318fa8300e2cc
43 N5f162383d5df4529a42b7817e4075192
44 sg:journal.1023786
45 schema:name MapMi: automated mapping of microRNA loci
46 schema:pagination 133
47 schema:productId N0f9cab923ff4422f99d8d74cbe40b1e8
48 N663f3fa3569e4aff82afeef0d94705b3
49 N6d4b2a33706543f38f1414a9aaa441cb
50 Nb4ec9c6b3bec4235a80d29008f799dfe
51 Ncc1d4778fb32400298e423e69a5305d5
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014867336
53 https://doi.org/10.1186/1471-2105-11-133
54 schema:sdDatePublished 2019-04-11T09:51
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N90aed2b40e6643cf80bba1cb9b974c1f
57 schema:url https://link.springer.com/10.1186%2F1471-2105-11-133
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0f9cab923ff4422f99d8d74cbe40b1e8 schema:name doi
62 schema:value 10.1186/1471-2105-11-133
63 rdf:type schema:PropertyValue
64 N2b1ea9ab59284a17ae5c2575a3f34a8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name MicroRNAs
66 rdf:type schema:DefinedTerm
67 N34a52ca030c34ecbb49318fa8300e2cc schema:volumeNumber 11
68 rdf:type schema:PublicationVolume
69 N3e8a6665d6ce4462a351521d8647d585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Databases, Nucleic Acid
71 rdf:type schema:DefinedTerm
72 N5f162383d5df4529a42b7817e4075192 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N644a9dbb5556496eb0c4cb4a4cfd1006 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Internet
76 rdf:type schema:DefinedTerm
77 N663f3fa3569e4aff82afeef0d94705b3 schema:name dimensions_id
78 schema:value pub.1014867336
79 rdf:type schema:PropertyValue
80 N6d4b2a33706543f38f1414a9aaa441cb schema:name nlm_unique_id
81 schema:value 100965194
82 rdf:type schema:PropertyValue
83 N7b2af1fd4e5846cd8b571b47608221ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Software
85 rdf:type schema:DefinedTerm
86 N8ff54cd40d384a8aaa22a1250e0261d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Species Specificity
88 rdf:type schema:DefinedTerm
89 N90aed2b40e6643cf80bba1cb9b974c1f schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N9229461535094057943c758fdfc6d4bb rdf:first sg:person.01016455437.29
92 rdf:rest Ne0294d7f7c4249a3acdd399d88982ad1
93 Nb4ec9c6b3bec4235a80d29008f799dfe schema:name readcube_id
94 schema:value 46d5737015f37ebfb8373e9f30e635f0be2b09050ee77a8ec6b359b223abfe27
95 rdf:type schema:PropertyValue
96 Ncc1d4778fb32400298e423e69a5305d5 schema:name pubmed_id
97 schema:value 20233390
98 rdf:type schema:PropertyValue
99 Ndfdf9140a2f94887abd48eb2e7b613b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Phylogeny
101 rdf:type schema:DefinedTerm
102 Ne0294d7f7c4249a3acdd399d88982ad1 rdf:first sg:person.0765550040.56
103 rdf:rest rdf:nil
104 Nf26dcf83e1fc4242b9fb56bbe9fc402b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Genomics
106 rdf:type schema:DefinedTerm
107 Nfdf205774aa949e886a7cedcf832efa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name RNA, Messenger
109 rdf:type schema:DefinedTerm
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:journal.1023786 schema:issn 1471-2105
117 schema:name BMC Bioinformatics
118 rdf:type schema:Periodical
119 sg:person.01016455437.29 schema:affiliation https://www.grid.ac/institutes/grid.418346.c
120 schema:familyName Guerra-Assunção
121 schema:givenName José Afonso
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016455437.29
123 rdf:type schema:Person
124 sg:person.0765550040.56 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
125 schema:familyName Enright
126 schema:givenName Anton J
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765550040.56
128 rdf:type schema:Person
129 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
130 https://doi.org/10.1007/bf00818163
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/35040556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041493395
133 https://doi.org/10.1038/35040556
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nrg2455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001732623
136 https://doi.org/10.1038/nrg2455
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nrm2632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009902558
139 https://doi.org/10.1038/nrm2632
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/1471-2105-9-192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003261211
142 https://doi.org/10.1186/1471-2105-9-192
143 rdf:type schema:CreativeWork
144 sg:pub.10.1186/1471-2105-9-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009144880
145 https://doi.org/10.1186/1471-2105-9-39
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/1471-2164-9-457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019176478
148 https://doi.org/10.1186/1471-2164-9-457
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
151 https://doi.org/10.1186/gb-2009-10-3-r25
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cell.2007.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045454894
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ydbio.2005.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015856420
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/10635150390235520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369386
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/bioinformatics/btn235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994102
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btp033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044035298
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btp107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036963638
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/nar/gkm952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020178588
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/gkn258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001172095
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/gkn707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007189923
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/gkn828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038202091
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/gkp145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001051929
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1122689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004440782
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1242/dev.02073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021158939
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1261/rna.2146903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042024352
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1534/genetics.107.072553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019608078
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
186 schema:name European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.418346.c schema:alternateName Instituto Gulbenkian de Ciência
189 schema:name European Bioinformatics Institute, Wellcome Trust Genome Campus, CB10 1SD, Hinxton, Cambridge, UK
190 PDBC, Instituto Gulbenkian de Ciência, Apartado 14, 2781-901, Oeiras, Portugal
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...