A parallel and incremental algorithm for efficient unique signature discovery on DNA databases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Hsiao Ping Lee, Tzu-Fang Sheu, Chuan Yi Tang

ABSTRACT

BACKGROUND: DNA signatures are distinct short nucleotide sequences that provide valuable information that is used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments. Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases, biologists typically select factor values based on experience, or even by guessing. If the discovered result is unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the signatures of length < or = l with mismatch tolerance > or = d. A discovery algorithm that could discover all implicit signatures, such that those that meet the requirements concerning the results, would be more helpful than one that depends on trial and error. However, existing discovery algorithms do not address the need to discover all implicit signatures. RESULTS: This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently discovering signatures under a certain discovery condition. The algorithm finds new results by using previously discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures efficiently. It uses the PISD algorithm as a kernel routine to discover implicit signatures efficiently under every feasible discovery condition. CONCLUSIONS: The proposed algorithms discover implicit signatures efficiently. The presented CMD algorithm has up to 97% less execution time than typical sequential discovery algorithms in the discovery of implicit signatures in experiments, when eight processing cores are used. More... »

PAGES

132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-132

DOI

http://dx.doi.org/10.1186/1471-2105-11-132

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001446439

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20230647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Applied Information Sciences, Chung Shan Medical University, 40201, Taichung, Taiwan, ROC", 
            "Department of Medical Research, Chung Shan Medical University Hospital, 40201, TaichungTaiwan, ROC", 
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hsiao Ping", 
        "id": "sg:person.01162617577.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162617577.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Department of Computer Science and Communication Engineering, Providence University, 43301, Taichung, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheu", 
        "givenName": "Tzu-Fang", 
        "id": "sg:person.010273373273.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273373273.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-10-s7-a8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000163945", 
          "https://doi.org/10.1186/1471-2105-10-s7-a8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001064830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.11.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005718093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1066677.1066706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008096314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012993835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.10.1340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015959499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016172909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032948600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033351609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2006.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041275634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041748365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045665937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.5.714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047113044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047546978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047546978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2006.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048859782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2008.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050359691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.582346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.126988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061176523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsac.2005.843546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061316738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2002.1039329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077040250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083275525", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2002.1184001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093187418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2006.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093649762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmlc.2005.1527325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094456963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmlc.2005.1527325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094456963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmlc.2006.259144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095364732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nafips.2004.1336324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095691155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: DNA signatures are distinct short nucleotide sequences that provide valuable information that is used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments. Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases, biologists typically select factor values based on experience, or even by guessing. If the discovered result is unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the signatures of length < or = l with mismatch tolerance > or = d. A discovery algorithm that could discover all implicit signatures, such that those that meet the requirements concerning the results, would be more helpful than one that depends on trial and error. However, existing discovery algorithms do not address the need to discover all implicit signatures.\nRESULTS: This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently discovering signatures under a certain discovery condition. The algorithm finds new results by using previously discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures efficiently. It uses the PISD algorithm as a kernel routine to discover implicit signatures efficiently under every feasible discovery condition.\nCONCLUSIONS: The proposed algorithms discover implicit signatures efficiently. The presented CMD algorithm has up to 97% less execution time than typical sequential discovery algorithms in the discovery of implicit signatures in experiments, when eight processing cores are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-11-132", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "A parallel and incremental algorithm for efficient unique signature discovery on DNA databases", 
    "pagination": "132", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06e3fca47c28fb2ffae50c415329eaf95a52112095505412e96f3a6394c6dfb5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20230647"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-132"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001446439"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-132", 
      "https://app.dimensions.ai/details/publication/pub.1001446439"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-11-132"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-132'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-132'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-132'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-132'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      63 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-132 schema:about N47268b7d69214195898c74b7d54627bf
2 N5a1cb60d571345378151dffbac6baa92
3 N64b91cbc3a2242af989228e86c89afd8
4 N8e12aa1a48ee42e0a29b2067578523e4
5 N92efbc96c541448fb6c124610e622e0f
6 Nbdc0c89ca6e74a3385a9c436f1aea327
7 Necf8d11666714aedb4ec1d40d7dd4b75
8 anzsrc-for:08
9 anzsrc-for:0806
10 schema:author N9232adf3999041cdab85115d43ebcf0e
11 schema:citation sg:pub.10.1186/1471-2105-10-s7-a8
12 https://app.dimensions.ai/details/publication/pub.1083275525
13 https://doi.org/10.1016/j.bios.2006.03.005
14 https://doi.org/10.1016/j.bios.2006.08.012
15 https://doi.org/10.1016/j.cmpb.2008.12.007
16 https://doi.org/10.1016/j.mimet.2005.08.012
17 https://doi.org/10.1093/bioinformatics/17.11.1067
18 https://doi.org/10.1093/bioinformatics/18.10.1340
19 https://doi.org/10.1093/bioinformatics/18.3.486
20 https://doi.org/10.1093/bioinformatics/btg203
21 https://doi.org/10.1093/bioinformatics/bth210
22 https://doi.org/10.1093/bioinformatics/bth347
23 https://doi.org/10.1093/bioinformatics/bti182
24 https://doi.org/10.1093/nar/gkp286
25 https://doi.org/10.1101/gr.10.5.714
26 https://doi.org/10.1109/2945.582346
27 https://doi.org/10.1109/49.126988
28 https://doi.org/10.1109/csb.2002.1039329
29 https://doi.org/10.1109/icdm.2002.1184001
30 https://doi.org/10.1109/icmla.2006.9
31 https://doi.org/10.1109/icmlc.2005.1527325
32 https://doi.org/10.1109/icmlc.2006.259144
33 https://doi.org/10.1109/jsac.2005.843546
34 https://doi.org/10.1109/nafips.2004.1336324
35 https://doi.org/10.1109/tvcg.2006.177
36 https://doi.org/10.1145/1066677.1066706
37 https://doi.org/10.1371/journal.pcbi.0030098
38 schema:datePublished 2010-12
39 schema:datePublishedReg 2010-12-01
40 schema:description BACKGROUND: DNA signatures are distinct short nucleotide sequences that provide valuable information that is used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments. Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases, biologists typically select factor values based on experience, or even by guessing. If the discovered result is unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the signatures of length < or = l with mismatch tolerance > or = d. A discovery algorithm that could discover all implicit signatures, such that those that meet the requirements concerning the results, would be more helpful than one that depends on trial and error. However, existing discovery algorithms do not address the need to discover all implicit signatures. RESULTS: This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently discovering signatures under a certain discovery condition. The algorithm finds new results by using previously discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures efficiently. It uses the PISD algorithm as a kernel routine to discover implicit signatures efficiently under every feasible discovery condition. CONCLUSIONS: The proposed algorithms discover implicit signatures efficiently. The presented CMD algorithm has up to 97% less execution time than typical sequential discovery algorithms in the discovery of implicit signatures in experiments, when eight processing cores are used.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf Nb0c04705832a4e8abd60463b8f76840d
45 Nebd0188bd4e14aa0bd9eb675cedbbd0b
46 sg:journal.1023786
47 schema:name A parallel and incremental algorithm for efficient unique signature discovery on DNA databases
48 schema:pagination 132
49 schema:productId N0a5e38fb99f146a1ab230cb37f61c4f7
50 N602a289c873648759c7920fd53caa0ff
51 N6da31ad46eef4dfb8f7b8ec028d4a5f8
52 N901fec7e1ed343f3b345d5be571c8491
53 Nbff1a3debc5c4e00ad9ecf1515eb3d6d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001446439
55 https://doi.org/10.1186/1471-2105-11-132
56 schema:sdDatePublished 2019-04-10T22:29
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne5427ce548d14e5d9caedf1e4950079d
59 schema:url http://link.springer.com/10.1186/1471-2105-11-132
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N071f96dd17654983a1c33490d9706cfe rdf:first sg:person.010273373273.11
64 rdf:rest N6cad766a062c43c099de81465f92ab67
65 N0a5e38fb99f146a1ab230cb37f61c4f7 schema:name readcube_id
66 schema:value 06e3fca47c28fb2ffae50c415329eaf95a52112095505412e96f3a6394c6dfb5
67 rdf:type schema:PropertyValue
68 N47268b7d69214195898c74b7d54627bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Databases, Nucleic Acid
70 rdf:type schema:DefinedTerm
71 N5a1cb60d571345378151dffbac6baa92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Algorithms
73 rdf:type schema:DefinedTerm
74 N602a289c873648759c7920fd53caa0ff schema:name nlm_unique_id
75 schema:value 100965194
76 rdf:type schema:PropertyValue
77 N64b91cbc3a2242af989228e86c89afd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Pattern Recognition, Automated
79 rdf:type schema:DefinedTerm
80 N6cad766a062c43c099de81465f92ab67 rdf:first sg:person.01312526135.27
81 rdf:rest rdf:nil
82 N6da31ad46eef4dfb8f7b8ec028d4a5f8 schema:name doi
83 schema:value 10.1186/1471-2105-11-132
84 rdf:type schema:PropertyValue
85 N8e12aa1a48ee42e0a29b2067578523e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name DNA
87 rdf:type schema:DefinedTerm
88 N901fec7e1ed343f3b345d5be571c8491 schema:name dimensions_id
89 schema:value pub.1001446439
90 rdf:type schema:PropertyValue
91 N9232adf3999041cdab85115d43ebcf0e rdf:first sg:person.01162617577.38
92 rdf:rest N071f96dd17654983a1c33490d9706cfe
93 N92efbc96c541448fb6c124610e622e0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Sequence Analysis, DNA
95 rdf:type schema:DefinedTerm
96 Nb0c04705832a4e8abd60463b8f76840d schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 Nbdc0c89ca6e74a3385a9c436f1aea327 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Expression Profiling
100 rdf:type schema:DefinedTerm
101 Nbff1a3debc5c4e00ad9ecf1515eb3d6d schema:name pubmed_id
102 schema:value 20230647
103 rdf:type schema:PropertyValue
104 Ne5427ce548d14e5d9caedf1e4950079d schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nebd0188bd4e14aa0bd9eb675cedbbd0b schema:volumeNumber 11
107 rdf:type schema:PublicationVolume
108 Necf8d11666714aedb4ec1d40d7dd4b75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Computational Biology
110 rdf:type schema:DefinedTerm
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information Systems
116 rdf:type schema:DefinedTerm
117 sg:journal.1023786 schema:issn 1471-2105
118 schema:name BMC Bioinformatics
119 rdf:type schema:Periodical
120 sg:person.010273373273.11 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
121 schema:familyName Sheu
122 schema:givenName Tzu-Fang
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010273373273.11
124 rdf:type schema:Person
125 sg:person.01162617577.38 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
126 schema:familyName Lee
127 schema:givenName Hsiao Ping
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162617577.38
129 rdf:type schema:Person
130 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
131 schema:familyName Tang
132 schema:givenName Chuan Yi
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
134 rdf:type schema:Person
135 sg:pub.10.1186/1471-2105-10-s7-a8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000163945
136 https://doi.org/10.1186/1471-2105-10-s7-a8
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1083275525 schema:CreativeWork
139 https://doi.org/10.1016/j.bios.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041275634
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.bios.2006.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048859782
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cmpb.2008.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050359691
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.mimet.2005.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047546978
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/17.11.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005718093
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bioinformatics/18.10.1340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015959499
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bioinformatics/18.3.486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032948600
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/btg203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041748365
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/bth210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033351609
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/bioinformatics/bth347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016172909
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/bioinformatics/bti182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045665937
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkp286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012993835
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1101/gr.10.5.714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047113044
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/2945.582346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146253
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/49.126988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061176523
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/csb.2002.1039329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077040250
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/icdm.2002.1184001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187418
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/icmla.2006.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093649762
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/icmlc.2005.1527325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094456963
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/icmlc.2006.259144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095364732
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/jsac.2005.843546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316738
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/nafips.2004.1336324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095691155
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tvcg.2006.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812644
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1066677.1066706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008096314
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pcbi.0030098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001064830
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
190 schema:name Department of Applied Information Sciences, Chung Shan Medical University, 40201, Taichung, Taiwan, ROC
191 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
192 Department of Medical Research, Chung Shan Medical University Hospital, 40201, TaichungTaiwan, ROC
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
195 schema:name Department of Computer Science and Communication Engineering, Providence University, 43301, Taichung, Taiwan, ROC
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...