Prodigal: prokaryotic gene recognition and translation initiation site identification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-08

AUTHORS

Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer, Loren J Hauser

ABSTRACT

BACKGROUND: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. RESULTS: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. CONCLUSION: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines. More... »

PAGES

119-119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-11-119

DOI

http://dx.doi.org/10.1186/1471-2105-11-119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026423599

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20211023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Chain Initiation, Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prokaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA", 
          "id": "http://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
            "Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hyatt", 
        "givenName": "Doug", 
        "id": "sg:person.0622320143.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622320143.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Gwo-Liang", 
        "id": "sg:person.01066216246.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066216246.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LoCascio", 
        "givenName": "Philip F", 
        "id": "sg:person.01133554113.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133554113.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
            "DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Land", 
        "givenName": "Miriam L", 
        "id": "sg:person.01115346474.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115346474.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA", 
          "id": "http://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
            "Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larimer", 
        "givenName": "Frank W", 
        "id": "sg:person.01203541750.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203541750.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA", 
            "DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauser", 
        "givenName": "Loren J", 
        "id": "sg:person.01200425336.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200425336.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-4-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013695495", 
          "https://doi.org/10.1186/1471-2105-4-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040156671", 
          "https://doi.org/10.1186/1471-2105-8-97"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-08", 
    "datePublishedReg": "2010-03-08", 
    "description": "BACKGROUND: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals.\nRESULTS: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives.\nCONCLUSION: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-11-119", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "Joint Genome Institute", 
      "translation initiation site identification", 
      "gene-finding methods", 
      "gene prediction programs", 
      "translation initiation site", 
      "gene prediction algorithms", 
      "gene structure prediction", 
      "Genome Institute", 
      "gene prediction", 
      "annotation pipeline", 
      "microbial organisms", 
      "gene recognition", 
      "initiation site", 
      "site recognition", 
      "prediction programs", 
      "genes", 
      "structure prediction", 
      "site identification", 
      "translation initiation site recognition", 
      "genome", 
      "organisms", 
      "Prodigal", 
      "correct identification", 
      "identification", 
      "false positives", 
      "sites", 
      "past decade", 
      "prediction algorithm", 
      "overall number", 
      "number", 
      "recognition", 
      "pipeline", 
      "results", 
      "positives", 
      "desirable goal", 
      "prediction", 
      "decades", 
      "valuable asset", 
      "goal", 
      "years", 
      "program", 
      "method", 
      "objective", 
      "quality", 
      "improvement", 
      "Institute", 
      "good results", 
      "algorithm", 
      "room", 
      "assets", 
      "years of experience", 
      "experience", 
      "new gene prediction algorithm", 
      "improved gene structure prediction", 
      "initiation site recognition", 
      "results of Prodigal", 
      "open source gene prediction program", 
      "source gene prediction program", 
      "prodigal/.", 
      "microbial annotation pipelines", 
      "prokaryotic gene recognition", 
      "initiation site identification"
    ], 
    "name": "Prodigal: prokaryotic gene recognition and translation initiation site identification", 
    "pagination": "119-119", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026423599"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-11-119"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20211023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-11-119", 
      "https://app.dimensions.ai/details/publication/pub.1026423599"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-11-119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-11-119'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      22 PREDICATES      96 URIs      86 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-11-119 schema:about N30bee8c1c43045e09ad9067f3be154fd
2 N6f2957b20fc64200ab3659a4705189b3
3 N851c9e228cf049839e8a770cc5faab09
4 N94fabcc86d8b4ba8b4bdf356b1133cc4
5 Nb060df73e7d8475aa5bac501ebb0aed1
6 Nb17d9186afe5404bbaf9a6b292cfff8c
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author N5e138754230741859376cf6614312bb9
10 schema:citation sg:pub.10.1186/1471-2105-4-21
11 sg:pub.10.1186/1471-2105-8-97
12 schema:datePublished 2010-03-08
13 schema:datePublishedReg 2010-03-08
14 schema:description BACKGROUND: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. RESULTS: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. CONCLUSION: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N626b43026cb442f5912b2c2d69fcde13
19 N776c5688cdfa422a9bb19f373477b78b
20 sg:journal.1023786
21 schema:keywords Genome Institute
22 Institute
23 Joint Genome Institute
24 Prodigal
25 algorithm
26 annotation pipeline
27 assets
28 correct identification
29 decades
30 desirable goal
31 experience
32 false positives
33 gene prediction
34 gene prediction algorithms
35 gene prediction programs
36 gene recognition
37 gene structure prediction
38 gene-finding methods
39 genes
40 genome
41 goal
42 good results
43 identification
44 improved gene structure prediction
45 improvement
46 initiation site
47 initiation site identification
48 initiation site recognition
49 method
50 microbial annotation pipelines
51 microbial organisms
52 new gene prediction algorithm
53 number
54 objective
55 open source gene prediction program
56 organisms
57 overall number
58 past decade
59 pipeline
60 positives
61 prediction
62 prediction algorithm
63 prediction programs
64 prodigal/.
65 program
66 prokaryotic gene recognition
67 quality
68 recognition
69 results
70 results of Prodigal
71 room
72 site identification
73 site recognition
74 sites
75 source gene prediction program
76 structure prediction
77 translation initiation site
78 translation initiation site identification
79 translation initiation site recognition
80 valuable asset
81 years
82 years of experience
83 schema:name Prodigal: prokaryotic gene recognition and translation initiation site identification
84 schema:pagination 119-119
85 schema:productId N2be93187d5194206b08538f0800f648f
86 N64bcd342118d4925ae0926739fd1dfa0
87 N812cd1e1a37d42bca424d6b683860460
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
89 https://doi.org/10.1186/1471-2105-11-119
90 schema:sdDatePublished 2021-12-01T19:22
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N43b86e8179be429197885e604552de58
93 schema:url https://doi.org/10.1186/1471-2105-11-119
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N1343e90df74740149d7ef1e8dfb87d60 rdf:first sg:person.01066216246.51
98 rdf:rest Nc73dde0853cd4c47851ae63ad3434ed6
99 N2be93187d5194206b08538f0800f648f schema:name dimensions_id
100 schema:value pub.1026423599
101 rdf:type schema:PropertyValue
102 N30bee8c1c43045e09ad9067f3be154fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Algorithms
104 rdf:type schema:DefinedTerm
105 N43b86e8179be429197885e604552de58 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N5e138754230741859376cf6614312bb9 rdf:first sg:person.0622320143.93
108 rdf:rest N1343e90df74740149d7ef1e8dfb87d60
109 N626b43026cb442f5912b2c2d69fcde13 schema:volumeNumber 11
110 rdf:type schema:PublicationVolume
111 N64bcd342118d4925ae0926739fd1dfa0 schema:name pubmed_id
112 schema:value 20211023
113 rdf:type schema:PropertyValue
114 N6960785199d04e26bfd527c228793746 rdf:first sg:person.01203541750.08
115 rdf:rest Nda62ae2790114d539492257062d54876
116 N6f2957b20fc64200ab3659a4705189b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Databases, Genetic
118 rdf:type schema:DefinedTerm
119 N776c5688cdfa422a9bb19f373477b78b schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 N812cd1e1a37d42bca424d6b683860460 schema:name doi
122 schema:value 10.1186/1471-2105-11-119
123 rdf:type schema:PropertyValue
124 N851c9e228cf049839e8a770cc5faab09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Peptide Chain Initiation, Translational
126 rdf:type schema:DefinedTerm
127 N94fabcc86d8b4ba8b4bdf356b1133cc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genome, Bacterial
129 rdf:type schema:DefinedTerm
130 Na6bd44e424ce4c9ebac8a598a9cef831 rdf:first sg:person.01115346474.60
131 rdf:rest N6960785199d04e26bfd527c228793746
132 Nb060df73e7d8475aa5bac501ebb0aed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Software
134 rdf:type schema:DefinedTerm
135 Nb17d9186afe5404bbaf9a6b292cfff8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prokaryotic Cells
137 rdf:type schema:DefinedTerm
138 Nc73dde0853cd4c47851ae63ad3434ed6 rdf:first sg:person.01133554113.43
139 rdf:rest Na6bd44e424ce4c9ebac8a598a9cef831
140 Nda62ae2790114d539492257062d54876 rdf:first sg:person.01200425336.30
141 rdf:rest rdf:nil
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:journal.1023786 schema:issn 1471-2105
149 schema:name BMC Bioinformatics
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.01066216246.51 schema:affiliation grid-institutes:grid.135519.a
153 schema:familyName Chen
154 schema:givenName Gwo-Liang
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066216246.51
156 rdf:type schema:Person
157 sg:person.01115346474.60 schema:affiliation grid-institutes:None
158 schema:familyName Land
159 schema:givenName Miriam L
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115346474.60
161 rdf:type schema:Person
162 sg:person.01133554113.43 schema:affiliation grid-institutes:grid.135519.a
163 schema:familyName LoCascio
164 schema:givenName Philip F
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133554113.43
166 rdf:type schema:Person
167 sg:person.01200425336.30 schema:affiliation grid-institutes:None
168 schema:familyName Hauser
169 schema:givenName Loren J
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200425336.30
171 rdf:type schema:Person
172 sg:person.01203541750.08 schema:affiliation grid-institutes:grid.411461.7
173 schema:familyName Larimer
174 schema:givenName Frank W
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203541750.08
176 rdf:type schema:Person
177 sg:person.0622320143.93 schema:affiliation grid-institutes:grid.411461.7
178 schema:familyName Hyatt
179 schema:givenName Doug
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622320143.93
181 rdf:type schema:Person
182 sg:pub.10.1186/1471-2105-4-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013695495
183 https://doi.org/10.1186/1471-2105-4-21
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2105-8-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040156671
186 https://doi.org/10.1186/1471-2105-8-97
187 rdf:type schema:CreativeWork
188 grid-institutes:None schema:alternateName DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
189 schema:name Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
190 DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.135519.a schema:alternateName Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
193 schema:name Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
194 rdf:type schema:Organization
195 grid-institutes:grid.411461.7 schema:alternateName Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA
196 schema:name Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
197 Genome Science and Technology Graduate School, The University of Tennessee, Knoxville, TN 37996, USA
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...