Issues in learning an ontology from text View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05-06

AUTHORS

Christopher Brewster, Simon Jupp, Joanne Luciano, David Shotton, Robert D Stevens, Ziqi Zhang

ABSTRACT

BACKGROUND: Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. RESULTS: Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/. CONCLUSION: We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning. More... »

PAGES

s1-s1

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2007-05-09. e-Science and biological pathway semantics in BMC BIOINFORMATICS
  • 2005. Text2Onto in NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS
  • 2000. Mining Ontologies from Text in KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT METHODS, MODELS, AND TOOLS
  • 2005-05-24. BioCreAtIvE Task 1A: gene mention finding evaluation in BMC BIOINFORMATICS
  • 1995. Pragmatics of specialist terms: The acquisition and representation of terminology in MACHINE TRANSLATION AND THE LEXICON
  • 2009. Dublin Core in ENCYCLOPEDIA OF DATABASE SYSTEMS
  • 2007-01-01. TermExtractor: a Web Application to Learn the Shared Terminology of Emergent Web Communities in ENTERPRISE INTEROPERABILITY II
  • 2007-11-07. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-10-s5-s1

    DOI

    http://dx.doi.org/10.1186/1471-2105-10-s5-s1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030472705

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19426458


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Database Management Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Information Storage and Retrieval", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vocabulary, Controlled", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK", 
              "id": "http://www.grid.ac/institutes/grid.7273.1", 
              "name": [
                "Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brewster", 
            "givenName": "Christopher", 
            "id": "sg:person.012245167541.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245167541.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Simon", 
            "id": "sg:person.01145016003.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145016003.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luciano", 
            "givenName": "Joanne", 
            "id": "sg:person.01112335735.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112335735.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Image Bioinformatics Research Group, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Image Bioinformatics Research Group, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shotton", 
            "givenName": "David", 
            "id": "sg:person.010665342711.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665342711.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stevens", 
            "givenName": "Robert D", 
            "id": "sg:person.0653547307.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK", 
              "id": "http://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Ziqi", 
            "id": "sg:person.012672570753.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012672570753.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-0-387-39940-9_894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021446916", 
              "https://doi.org/10.1007/978-0-387-39940-9_894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-s1-s2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048957855", 
              "https://doi.org/10.1186/1471-2105-6-s1-s2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028001312", 
              "https://doi.org/10.1038/nbt1346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39967-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007388042", 
              "https://doi.org/10.1007/3-540-39967-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11428817_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053543659", 
              "https://doi.org/10.1007/11428817_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-59040-4_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017674088", 
              "https://doi.org/10.1007/3-540-59040-4_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84628-858-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040830912", 
              "https://doi.org/10.1007/978-1-84628-858-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-s3-s3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023645192", 
              "https://doi.org/10.1186/1471-2105-8-s3-s3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-05-06", 
        "datePublishedReg": "2009-05-06", 
        "description": "BACKGROUND: Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.\nRESULTS: Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/.\nCONCLUSION: We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2105-10-s5-s1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2763287", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2776078", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "processing steps", 
          "shallow structure", 
          "increases efficiency", 
          "rapid manner", 
          "systematic method", 
          "main challenges", 
          "construction", 
          "structure", 
          "unwanted terms", 
          "efficiency", 
          "number of hierarchies", 
          "technique", 
          "method", 
          "filtering", 
          "cost", 
          "step", 
          "terms", 
          "same technique", 
          "output", 
          "human effort", 
          "complex process", 
          "process", 
          "methodology", 
          "major impact", 
          "experiments", 
          "journal papers", 
          "input", 
          "precision", 
          "domain", 
          "potential", 
          "different choices", 
          "challenges", 
          "point", 
          "stepping stone", 
          "impact", 
          "objective", 
          "starting point", 
          "validity", 
          "initial step", 
          "vocabulary construction", 
          "contribution", 
          "issues", 
          "ontology construction", 
          "set", 
          "number", 
          "inclusion", 
          "scientific domains", 
          "efforts", 
          "maintenance", 
          "exploration", 
          "research", 
          "life", 
          "manner", 
          "choice", 
          "patterns", 
          "term inclusion", 
          "stones", 
          "topic", 
          "relationship", 
          "sequence", 
          "set of terms", 
          "hierarchy", 
          "heterogeneous corpus", 
          "lexico-syntactic patterns", 
          "subsumption relationships", 
          "limited human effort", 
          "corpus", 
          "ontology", 
          "text", 
          "behavior domains", 
          "recall", 
          "learning", 
          "paper", 
          "animal behaviour domain", 
          "pre-existing text processing steps", 
          "text processing steps", 
          "term ontology-like structure", 
          "ontology-like structure", 
          "animal behaviour terms", 
          "behaviour terms", 
          "nascent ontology", 
          "animalbehaviour/.", 
          "rigourous ontologies"
        ], 
        "name": "Issues in learning an ontology from text", 
        "pagination": "s1-s1", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030472705"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-10-s5-s1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19426458"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-10-s5-s1", 
          "https://app.dimensions.ai/details/publication/pub.1030472705"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_486.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2105-10-s5-s1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-s5-s1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-s5-s1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-s5-s1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-s5-s1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      22 PREDICATES      125 URIs      108 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-10-s5-s1 schema:about N3384c84b4eee4ab9ab168432aa4545c2
    2 N4d0c4ad27fdd40738e5910860f843845
    3 N611c421d6e0944a59375cff1d0e31e89
    4 N8a7d5d737acb4e2c9f94660879585619
    5 Nc29f34dbe3f949ad87b003711934d4b8
    6 Nf0304818e7dc456bb0ccc4be561d41e8
    7 Nf08f1d6382014cff9de363adf9d78a66
    8 anzsrc-for:08
    9 anzsrc-for:0801
    10 schema:author N227c69b1a561479aa8ce71fc30f2f576
    11 schema:citation sg:pub.10.1007/11428817_21
    12 sg:pub.10.1007/3-540-39967-4_14
    13 sg:pub.10.1007/3-540-59040-4_20
    14 sg:pub.10.1007/978-0-387-39940-9_894
    15 sg:pub.10.1007/978-1-84628-858-6_32
    16 sg:pub.10.1038/75556
    17 sg:pub.10.1038/nbt1346
    18 sg:pub.10.1186/1471-2105-6-s1-s2
    19 sg:pub.10.1186/1471-2105-8-s3-s3
    20 schema:datePublished 2009-05-06
    21 schema:datePublishedReg 2009-05-06
    22 schema:description BACKGROUND: Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. RESULTS: Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/. CONCLUSION: We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N6c5fc226dd3e4254b98282f15e8f9c15
    27 Nd3dae85473414d98a062150cea37fea2
    28 sg:journal.1023786
    29 schema:keywords animal behaviour domain
    30 animal behaviour terms
    31 animalbehaviour/.
    32 behavior domains
    33 behaviour terms
    34 challenges
    35 choice
    36 complex process
    37 construction
    38 contribution
    39 corpus
    40 cost
    41 different choices
    42 domain
    43 efficiency
    44 efforts
    45 experiments
    46 exploration
    47 filtering
    48 heterogeneous corpus
    49 hierarchy
    50 human effort
    51 impact
    52 inclusion
    53 increases efficiency
    54 initial step
    55 input
    56 issues
    57 journal papers
    58 learning
    59 lexico-syntactic patterns
    60 life
    61 limited human effort
    62 main challenges
    63 maintenance
    64 major impact
    65 manner
    66 method
    67 methodology
    68 nascent ontology
    69 number
    70 number of hierarchies
    71 objective
    72 ontology
    73 ontology construction
    74 ontology-like structure
    75 output
    76 paper
    77 patterns
    78 point
    79 potential
    80 pre-existing text processing steps
    81 precision
    82 process
    83 processing steps
    84 rapid manner
    85 recall
    86 relationship
    87 research
    88 rigourous ontologies
    89 same technique
    90 scientific domains
    91 sequence
    92 set
    93 set of terms
    94 shallow structure
    95 starting point
    96 step
    97 stepping stone
    98 stones
    99 structure
    100 subsumption relationships
    101 systematic method
    102 technique
    103 term inclusion
    104 term ontology-like structure
    105 terms
    106 text
    107 text processing steps
    108 topic
    109 unwanted terms
    110 validity
    111 vocabulary construction
    112 schema:name Issues in learning an ontology from text
    113 schema:pagination s1-s1
    114 schema:productId Naf5069a3d9e64254abb38037ce6b73a3
    115 Nbcf8e4f424034932ad161d58b7bc0292
    116 Neb498f75b56845f98e1abc7d29996e4d
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030472705
    118 https://doi.org/10.1186/1471-2105-10-s5-s1
    119 schema:sdDatePublished 2022-01-01T18:20
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N64610d7839624d559a8fc20228a21647
    122 schema:url https://doi.org/10.1186/1471-2105-10-s5-s1
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N0242a5a74f014bcbb6bfdb01a971c38b rdf:first sg:person.01145016003.29
    127 rdf:rest N9d568d2ef0374eacba95b330d6783d9a
    128 N227c69b1a561479aa8ce71fc30f2f576 rdf:first sg:person.012245167541.31
    129 rdf:rest N0242a5a74f014bcbb6bfdb01a971c38b
    130 N3384c84b4eee4ab9ab168432aa4545c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Pattern Recognition, Automated
    132 rdf:type schema:DefinedTerm
    133 N4d0c4ad27fdd40738e5910860f843845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Database Management Systems
    135 rdf:type schema:DefinedTerm
    136 N611c421d6e0944a59375cff1d0e31e89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Information Storage and Retrieval
    138 rdf:type schema:DefinedTerm
    139 N64610d7839624d559a8fc20228a21647 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N673661d7f3e8471ea7ee8de10505102a rdf:first sg:person.012672570753.14
    142 rdf:rest rdf:nil
    143 N6c5fc226dd3e4254b98282f15e8f9c15 schema:issueNumber Suppl 5
    144 rdf:type schema:PublicationIssue
    145 N8a7d5d737acb4e2c9f94660879585619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Computational Biology
    147 rdf:type schema:DefinedTerm
    148 N9d568d2ef0374eacba95b330d6783d9a rdf:first sg:person.01112335735.57
    149 rdf:rest Nf37520cb7fb54e3b9890f6b4c579e2f7
    150 Na5d2d79b092b400abf37ae3dd5ed6908 rdf:first sg:person.0653547307.62
    151 rdf:rest N673661d7f3e8471ea7ee8de10505102a
    152 Naf5069a3d9e64254abb38037ce6b73a3 schema:name pubmed_id
    153 schema:value 19426458
    154 rdf:type schema:PropertyValue
    155 Nbcf8e4f424034932ad161d58b7bc0292 schema:name doi
    156 schema:value 10.1186/1471-2105-10-s5-s1
    157 rdf:type schema:PropertyValue
    158 Nc29f34dbe3f949ad87b003711934d4b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Vocabulary, Controlled
    160 rdf:type schema:DefinedTerm
    161 Nd3dae85473414d98a062150cea37fea2 schema:volumeNumber 10
    162 rdf:type schema:PublicationVolume
    163 Neb498f75b56845f98e1abc7d29996e4d schema:name dimensions_id
    164 schema:value pub.1030472705
    165 rdf:type schema:PropertyValue
    166 Nf0304818e7dc456bb0ccc4be561d41e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Algorithms
    168 rdf:type schema:DefinedTerm
    169 Nf08f1d6382014cff9de363adf9d78a66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Animals
    171 rdf:type schema:DefinedTerm
    172 Nf37520cb7fb54e3b9890f6b4c579e2f7 rdf:first sg:person.010665342711.41
    173 rdf:rest Na5d2d79b092b400abf37ae3dd5ed6908
    174 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Information and Computing Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Artificial Intelligence and Image Processing
    179 rdf:type schema:DefinedTerm
    180 sg:grant.2763287 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-10-s5-s1
    181 rdf:type schema:MonetaryGrant
    182 sg:grant.2776078 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-10-s5-s1
    183 rdf:type schema:MonetaryGrant
    184 sg:journal.1023786 schema:issn 1471-2105
    185 schema:name BMC Bioinformatics
    186 schema:publisher Springer Nature
    187 rdf:type schema:Periodical
    188 sg:person.010665342711.41 schema:affiliation grid-institutes:None
    189 schema:familyName Shotton
    190 schema:givenName David
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665342711.41
    192 rdf:type schema:Person
    193 sg:person.01112335735.57 schema:affiliation grid-institutes:grid.38142.3c
    194 schema:familyName Luciano
    195 schema:givenName Joanne
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112335735.57
    197 rdf:type schema:Person
    198 sg:person.01145016003.29 schema:affiliation grid-institutes:grid.5379.8
    199 schema:familyName Jupp
    200 schema:givenName Simon
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145016003.29
    202 rdf:type schema:Person
    203 sg:person.012245167541.31 schema:affiliation grid-institutes:grid.7273.1
    204 schema:familyName Brewster
    205 schema:givenName Christopher
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245167541.31
    207 rdf:type schema:Person
    208 sg:person.012672570753.14 schema:affiliation grid-institutes:grid.11835.3e
    209 schema:familyName Zhang
    210 schema:givenName Ziqi
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012672570753.14
    212 rdf:type schema:Person
    213 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
    214 schema:familyName Stevens
    215 schema:givenName Robert D
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
    217 rdf:type schema:Person
    218 sg:pub.10.1007/11428817_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053543659
    219 https://doi.org/10.1007/11428817_21
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/3-540-39967-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007388042
    222 https://doi.org/10.1007/3-540-39967-4_14
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/3-540-59040-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017674088
    225 https://doi.org/10.1007/3-540-59040-4_20
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/978-0-387-39940-9_894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021446916
    228 https://doi.org/10.1007/978-0-387-39940-9_894
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/978-1-84628-858-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830912
    231 https://doi.org/10.1007/978-1-84628-858-6_32
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    234 https://doi.org/10.1038/75556
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
    237 https://doi.org/10.1038/nbt1346
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/1471-2105-6-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048957855
    240 https://doi.org/10.1186/1471-2105-6-s1-s2
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1471-2105-8-s3-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023645192
    243 https://doi.org/10.1186/1471-2105-8-s3-s3
    244 rdf:type schema:CreativeWork
    245 grid-institutes:None schema:alternateName Image Bioinformatics Research Group, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK
    246 schema:name Image Bioinformatics Research Group, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK
    247 rdf:type schema:Organization
    248 grid-institutes:grid.11835.3e schema:alternateName Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
    249 schema:name Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
    250 rdf:type schema:Organization
    251 grid-institutes:grid.38142.3c schema:alternateName Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115, USA
    252 schema:name Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115, USA
    253 rdf:type schema:Organization
    254 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK
    255 schema:name School of Computer Science, Manchester University, Oxford Road, Manchester, M13 9PL, UK
    256 rdf:type schema:Organization
    257 grid-institutes:grid.7273.1 schema:alternateName Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
    258 schema:name Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...