A structure filter for the Eukaryotic Linear Motif Resource View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10-24

AUTHORS

Allegra Via, Cathryn M Gould, Christine Gemünd, Toby J Gibson, Manuela Helmer-Citterich

ABSTRACT

BackgroundMany proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality.ResultsCurrent methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource http://elm.eu.org/ and through a Web Service protocol.ConclusionNew occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates. More... »

PAGES

351

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-10-351

DOI

http://dx.doi.org/10.1186/1471-2105-10-351

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000080547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19852836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eukaryota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biocomputing group, Department of Biochemical Science, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy", 
            "Biocomputing group, Department of Biochemical Science, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Via", 
        "givenName": "Allegra", 
        "id": "sg:person.01256723345.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256723345.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gould", 
        "givenName": "Cathryn M", 
        "id": "sg:person.0620243210.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620243210.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cellzome AG, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.420105.2", 
          "name": [
            "Cellzome AG, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gem\u00fcnd", 
        "givenName": "Christine", 
        "id": "sg:person.0745524271.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745524271.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4709.a", 
          "name": [
            "European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "Toby J", 
        "id": "sg:person.01254663627.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254663627.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helmer-Citterich", 
        "givenName": "Manuela", 
        "id": "sg:person.01311204520.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311204520.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-8274-2550-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019690709", 
          "https://doi.org/10.1007/978-3-8274-2550-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-9-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026790619", 
          "https://doi.org/10.1186/1472-6807-9-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038206998", 
          "https://doi.org/10.1038/nrm759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029696607", 
          "https://doi.org/10.1038/nmeth856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009274705", 
          "https://doi.org/10.1038/nsmb741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028307827", 
          "https://doi.org/10.1186/1471-2105-9-229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10-24", 
    "datePublishedReg": "2009-10-24", 
    "description": "BackgroundMany proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality.ResultsCurrent methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource http://elm.eu.org/ and through a Web Service protocol.ConclusionNew occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-10-351", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "linear motifs", 
      "putative motifs", 
      "globular domain", 
      "candidate motifs", 
      "secondary structure context", 
      "protein tertiary structure", 
      "Eukaryotic Linear Motif (ELM) resource", 
      "taxonomic range", 
      "motif accessibility", 
      "cellular compartments", 
      "random motifs", 
      "bioinformatics tools", 
      "primary sequence", 
      "functional motifs", 
      "protein structure", 
      "close relatives", 
      "tertiary structure", 
      "motif occurrences", 
      "structural regions", 
      "motif", 
      "sequence modules", 
      "globular region", 
      "motif candidates", 
      "motif instances", 
      "novel occurrence", 
      "protein", 
      "polypeptide", 
      "functional instances", 
      "random matches", 
      "ELM resource", 
      "structure context", 
      "structural context", 
      "domain structure", 
      "domain", 
      "secondary structural context", 
      "functional match", 
      "homologues", 
      "enrichment", 
      "conservation", 
      "compartments", 
      "sequence", 
      "region", 
      "occurrence", 
      "accessibility", 
      "accessible part", 
      "relatives", 
      "structure", 
      "representative domains", 
      "benchmark set", 
      "partners", 
      "resources", 
      "loop", 
      "experimental validation", 
      "yield", 
      "segments", 
      "tool", 
      "functionality", 
      "pipeline", 
      "candidates", 
      "attributes", 
      "set", 
      "part", 
      "graphical interface", 
      "match", 
      "context", 
      "module", 
      "instances", 
      "range", 
      "experimental testing", 
      "information", 
      "classification", 
      "prediction", 
      "protocol", 
      "validation", 
      "difficult task", 
      "method", 
      "time", 
      "interface", 
      "confidence", 
      "testing", 
      "low confidence", 
      "situation", 
      "filter", 
      "valuable time", 
      "task", 
      "scores", 
      "structure filter", 
      "reliability", 
      "users", 
      "service protocols", 
      "high confidence classifications", 
      "web service protocols"
    ], 
    "name": "A structure filter for the Eukaryotic Linear Motif Resource", 
    "pagination": "351", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000080547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-10-351"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19852836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-10-351", 
      "https://app.dimensions.ai/details/publication/pub.1000080547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-10-351"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-351'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-351'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-351'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-351'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      131 URIs      117 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-10-351 schema:about N2f293fdd7a934fa7af9c79566f36b74c
2 N423464bddbb441629188af7ed1ea90bd
3 N8777168d3bf14cf19a2f1a5890d6ab75
4 Na7c580c31ca84d99b04d9e4cea44211d
5 Nbd0b3321f8e04a8ea73fd4d9934a1c11
6 Nca72fb83f7ed4c798127e9725d294a56
7 Ncce397fce8364f5e846e61f36f01166e
8 Nd4d7827a9ac84bbe896728311c06973a
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N453ad7e4c1d34713b011305017582770
12 schema:citation sg:pub.10.1007/978-3-8274-2550-8
13 sg:pub.10.1038/nmeth856
14 sg:pub.10.1038/nrm759
15 sg:pub.10.1038/nsmb741
16 sg:pub.10.1186/1471-2105-9-229
17 sg:pub.10.1186/1472-6807-9-51
18 schema:datePublished 2009-10-24
19 schema:datePublishedReg 2009-10-24
20 schema:description BackgroundMany proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality.ResultsCurrent methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource http://elm.eu.org/ and through a Web Service protocol.ConclusionNew occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N21424b3d1bce44d5a931b5451f16276a
24 Nd85e870c391047b5a3215fe34889a53d
25 sg:journal.1023786
26 schema:keywords ELM resource
27 Eukaryotic Linear Motif (ELM) resource
28 accessibility
29 accessible part
30 attributes
31 benchmark set
32 bioinformatics tools
33 candidate motifs
34 candidates
35 cellular compartments
36 classification
37 close relatives
38 compartments
39 confidence
40 conservation
41 context
42 difficult task
43 domain
44 domain structure
45 enrichment
46 experimental testing
47 experimental validation
48 filter
49 functional instances
50 functional match
51 functional motifs
52 functionality
53 globular domain
54 globular region
55 graphical interface
56 high confidence classifications
57 homologues
58 information
59 instances
60 interface
61 linear motifs
62 loop
63 low confidence
64 match
65 method
66 module
67 motif
68 motif accessibility
69 motif candidates
70 motif instances
71 motif occurrences
72 novel occurrence
73 occurrence
74 part
75 partners
76 pipeline
77 polypeptide
78 prediction
79 primary sequence
80 protein
81 protein structure
82 protein tertiary structure
83 protocol
84 putative motifs
85 random matches
86 random motifs
87 range
88 region
89 relatives
90 reliability
91 representative domains
92 resources
93 scores
94 secondary structural context
95 secondary structure context
96 segments
97 sequence
98 sequence modules
99 service protocols
100 set
101 situation
102 structural context
103 structural regions
104 structure
105 structure context
106 structure filter
107 task
108 taxonomic range
109 tertiary structure
110 testing
111 time
112 tool
113 users
114 validation
115 valuable time
116 web service protocols
117 yield
118 schema:name A structure filter for the Eukaryotic Linear Motif Resource
119 schema:pagination 351
120 schema:productId N10f117af6ae84f179ecb4a01d7bd3e5f
121 N9dd9247b864942eea1c4efa0dfa2eee2
122 Nd091e746eb254793aef1a1ca0676060b
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000080547
124 https://doi.org/10.1186/1471-2105-10-351
125 schema:sdDatePublished 2022-09-02T15:54
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N5cebdb0272e54ee19a5cdcd69e8044a8
128 schema:url https://doi.org/10.1186/1471-2105-10-351
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N10f117af6ae84f179ecb4a01d7bd3e5f schema:name doi
133 schema:value 10.1186/1471-2105-10-351
134 rdf:type schema:PropertyValue
135 N21424b3d1bce44d5a931b5451f16276a schema:volumeNumber 10
136 rdf:type schema:PublicationVolume
137 N2f293fdd7a934fa7af9c79566f36b74c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Software
139 rdf:type schema:DefinedTerm
140 N38a8ee7855844e4f81a9f3adde916829 rdf:first sg:person.0745524271.38
141 rdf:rest N87f935e88cc34c939390a9b822da321d
142 N423464bddbb441629188af7ed1ea90bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Eukaryota
144 rdf:type schema:DefinedTerm
145 N453ad7e4c1d34713b011305017582770 rdf:first sg:person.01256723345.23
146 rdf:rest N4c26a072ea914e57affb1ff826ccdd42
147 N4c26a072ea914e57affb1ff826ccdd42 rdf:first sg:person.0620243210.16
148 rdf:rest N38a8ee7855844e4f81a9f3adde916829
149 N5cebdb0272e54ee19a5cdcd69e8044a8 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N8777168d3bf14cf19a2f1a5890d6ab75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Peptides
153 rdf:type schema:DefinedTerm
154 N87f935e88cc34c939390a9b822da321d rdf:first sg:person.01254663627.46
155 rdf:rest Nb027a0e4cc6e47c5916b8a6c29905df4
156 N9dd9247b864942eea1c4efa0dfa2eee2 schema:name pubmed_id
157 schema:value 19852836
158 rdf:type schema:PropertyValue
159 Na7c580c31ca84d99b04d9e4cea44211d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Databases, Protein
161 rdf:type schema:DefinedTerm
162 Nb027a0e4cc6e47c5916b8a6c29905df4 rdf:first sg:person.01311204520.58
163 rdf:rest rdf:nil
164 Nbd0b3321f8e04a8ea73fd4d9934a1c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Protein Conformation
166 rdf:type schema:DefinedTerm
167 Nca72fb83f7ed4c798127e9725d294a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Amino Acid Motifs
169 rdf:type schema:DefinedTerm
170 Ncce397fce8364f5e846e61f36f01166e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Proteins
172 rdf:type schema:DefinedTerm
173 Nd091e746eb254793aef1a1ca0676060b schema:name dimensions_id
174 schema:value pub.1000080547
175 rdf:type schema:PropertyValue
176 Nd4d7827a9ac84bbe896728311c06973a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Computational Biology
178 rdf:type schema:DefinedTerm
179 Nd85e870c391047b5a3215fe34889a53d schema:issueNumber 1
180 rdf:type schema:PublicationIssue
181 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
182 schema:name Information and Computing Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
185 schema:name Artificial Intelligence and Image Processing
186 rdf:type schema:DefinedTerm
187 sg:journal.1023786 schema:issn 1471-2105
188 schema:name BMC Bioinformatics
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01254663627.46 schema:affiliation grid-institutes:grid.4709.a
192 schema:familyName Gibson
193 schema:givenName Toby J
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254663627.46
195 rdf:type schema:Person
196 sg:person.01256723345.23 schema:affiliation grid-institutes:grid.7841.a
197 schema:familyName Via
198 schema:givenName Allegra
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256723345.23
200 rdf:type schema:Person
201 sg:person.01311204520.58 schema:affiliation grid-institutes:grid.6530.0
202 schema:familyName Helmer-Citterich
203 schema:givenName Manuela
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311204520.58
205 rdf:type schema:Person
206 sg:person.0620243210.16 schema:affiliation grid-institutes:grid.4709.a
207 schema:familyName Gould
208 schema:givenName Cathryn M
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620243210.16
210 rdf:type schema:Person
211 sg:person.0745524271.38 schema:affiliation grid-institutes:grid.420105.2
212 schema:familyName Gemünd
213 schema:givenName Christine
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745524271.38
215 rdf:type schema:Person
216 sg:pub.10.1007/978-3-8274-2550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019690709
217 https://doi.org/10.1007/978-3-8274-2550-8
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nmeth856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029696607
220 https://doi.org/10.1038/nmeth856
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nrm759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038206998
223 https://doi.org/10.1038/nrm759
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nsmb741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009274705
226 https://doi.org/10.1038/nsmb741
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/1471-2105-9-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028307827
229 https://doi.org/10.1186/1471-2105-9-229
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1472-6807-9-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026790619
232 https://doi.org/10.1186/1472-6807-9-51
233 rdf:type schema:CreativeWork
234 grid-institutes:grid.420105.2 schema:alternateName Cellzome AG, Heidelberg, Germany
235 schema:name Cellzome AG, Heidelberg, Germany
236 rdf:type schema:Organization
237 grid-institutes:grid.4709.a schema:alternateName European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany
238 schema:name European Molecular Biology Laboratory, Postfach 10.2209, 69012, Heidelberg, Germany
239 rdf:type schema:Organization
240 grid-institutes:grid.6530.0 schema:alternateName Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
241 schema:name Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
242 rdf:type schema:Organization
243 grid-institutes:grid.7841.a schema:alternateName Biocomputing group, Department of Biochemical Science, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy
244 schema:name Biocomputing group, Department of Biochemical Science, Sapienza University of Rome, P.le Aldo Moro 5, Rome, Italy
245 Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...