Robust extraction of functional signals from gene set analysis using a generalized threshold free scoring function View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Petri Törönen, Pauli J Ojala, Pekka Marttinen, Liisa Holm

ABSTRACT

BACKGROUND: A central task in contemporary biosciences is the identification of biological processes showing response in genome-wide differential gene expression experiments. Two types of analysis are common. Either, one generates an ordered list based on the differential expression values of the probed genes and examines the tail areas of the list for over-representation of various functional classes. Alternatively, one monitors the average differential expression level of genes belonging to a given functional class. So far these two types of method have not been combined. RESULTS: We introduce a scoring function, Gene Set Z-score (GSZ), for the analysis of functional class over-representation that combines two previous analysis methods. GSZ encompasses popular functions such as correlation, hypergeometric test, Max-Mean and Random Sets as limiting cases. GSZ is stable against changes in class size as well as across different positions of the analysed gene list in tests with randomized data. GSZ shows the best overall performance in a detailed comparison to popular functions using artificial data. Likewise, GSZ stands out in a cross-validation of methods using split real data. A comparison of empirical p-values further shows a strong difference in favour of GSZ, which clearly reports better p-values for top classes than the other methods. Furthermore, GSZ detects relevant biological themes that are missed by the other methods. These observations also hold when comparing GSZ with popular program packages. CONCLUSION: GSZ and improved versions of earlier methods are a useful contribution to the analysis of differential gene expression. The methods and supplementary material are available from the website http://ekhidna.biocenter.helsinki.fi/users/petri/public/GSZ/GSZscore.html. More... »

PAGES

307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-10-307

DOI

http://dx.doi.org/10.1186/1471-2105-10-307

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016640654

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19775443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "The Holm Group, Biocenter II, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00f6r\u00f6nen", 
        "givenName": "Petri", 
        "id": "sg:person.01004444626.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004444626.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Finnish Red Cross", 
          "id": "https://www.grid.ac/institutes/grid.452433.7", 
          "name": [
            "Finnish Red Cross Blood Service Research and Development, Kivihaantie 7, 00310, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ojala", 
        "givenName": "Pauli J", 
        "id": "sg:person.01276400376.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276400376.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "The Holm Group, Biocenter II, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014, Finland", 
            "Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holm", 
        "givenName": "Liisa", 
        "id": "sg:person.0774703214.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774703214.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2003-4-10-r70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293245", 
          "https://doi.org/10.1186/gb-2003-4-10-r70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002755730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002804605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005164252", 
          "https://doi.org/10.1186/1471-2105-10-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aoas101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008688091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009686329", 
          "https://doi.org/10.1186/1471-2105-8-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009686329", 
          "https://doi.org/10.1186/1471-2105-8-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377811", 
          "https://doi.org/10.1038/ng1180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377811", 
          "https://doi.org/10.1038/ng1180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-2165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018638362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-5-p3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021292424", 
          "https://doi.org/10.1186/gb-2003-4-5-p3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aoas104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021533100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025522417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxlet.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030400576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxlet.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030400576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034318296", 
          "https://doi.org/10.1186/1471-2105-7-538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-5-r74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035612055", 
          "https://doi.org/10.1186/gb-2007-8-5-r74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506577102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506580102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037705714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040526112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588889", 
          "https://doi.org/10.1186/1471-2105-5-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051185684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051276435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075024918", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: A central task in contemporary biosciences is the identification of biological processes showing response in genome-wide differential gene expression experiments. Two types of analysis are common. Either, one generates an ordered list based on the differential expression values of the probed genes and examines the tail areas of the list for over-representation of various functional classes. Alternatively, one monitors the average differential expression level of genes belonging to a given functional class. So far these two types of method have not been combined.\nRESULTS: We introduce a scoring function, Gene Set Z-score (GSZ), for the analysis of functional class over-representation that combines two previous analysis methods. GSZ encompasses popular functions such as correlation, hypergeometric test, Max-Mean and Random Sets as limiting cases. GSZ is stable against changes in class size as well as across different positions of the analysed gene list in tests with randomized data. GSZ shows the best overall performance in a detailed comparison to popular functions using artificial data. Likewise, GSZ stands out in a cross-validation of methods using split real data. A comparison of empirical p-values further shows a strong difference in favour of GSZ, which clearly reports better p-values for top classes than the other methods. Furthermore, GSZ detects relevant biological themes that are missed by the other methods. These observations also hold when comparing GSZ with popular program packages.\nCONCLUSION: GSZ and improved versions of earlier methods are a useful contribution to the analysis of differential gene expression. The methods and supplementary material are available from the website http://ekhidna.biocenter.helsinki.fi/users/petri/public/GSZ/GSZscore.html.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2105-10-307", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Robust extraction of functional signals from gene set analysis using a generalized threshold free scoring function", 
    "pagination": "307", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f49a584f48a792e3d4146753cd1a2b22b4e25dc0724a5712722363a1af439f4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19775443"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100965194"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-10-307"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016640654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-10-307", 
      "https://app.dimensions.ai/details/publication/pub.1016640654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1471-2105-10-307"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-307'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-307'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-307'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-307'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      58 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-10-307 schema:about N345174372fe244f0841fa96afdee6b70
2 N5e1e1c75edb144ed8412049e4501d747
3 N6daee617fe1e495db14dcedaee868ba0
4 N7dd17eca77d140258d0fa6a49a16d296
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author Ncd04ddf5232941898bb6595d151cf436
8 schema:citation sg:pub.10.1038/75556
9 sg:pub.10.1038/ng1180
10 sg:pub.10.1186/1471-2105-10-47
11 sg:pub.10.1186/1471-2105-5-34
12 sg:pub.10.1186/1471-2105-7-538
13 sg:pub.10.1186/1471-2105-8-9
14 sg:pub.10.1186/gb-2003-4-10-r70
15 sg:pub.10.1186/gb-2003-4-5-p3
16 sg:pub.10.1186/gb-2004-5-10-r80
17 sg:pub.10.1186/gb-2007-8-5-r74
18 https://app.dimensions.ai/details/publication/pub.1075024918
19 https://doi.org/10.1016/j.toxlet.2005.02.004
20 https://doi.org/10.1073/pnas.0506577102
21 https://doi.org/10.1073/pnas.0506580102
22 https://doi.org/10.1093/bioinformatics/btg363
23 https://doi.org/10.1093/bioinformatics/bti149
24 https://doi.org/10.1093/bioinformatics/btm051
25 https://doi.org/10.1093/nar/28.1.27
26 https://doi.org/10.1093/nar/28.1.41
27 https://doi.org/10.1093/nar/gkm980
28 https://doi.org/10.1093/nar/gng015
29 https://doi.org/10.1093/nar/gni179
30 https://doi.org/10.1158/1078-0432.ccr-04-2165
31 https://doi.org/10.1214/07-aoas101
32 https://doi.org/10.1214/07-aoas104
33 schema:datePublished 2009-12
34 schema:datePublishedReg 2009-12-01
35 schema:description BACKGROUND: A central task in contemporary biosciences is the identification of biological processes showing response in genome-wide differential gene expression experiments. Two types of analysis are common. Either, one generates an ordered list based on the differential expression values of the probed genes and examines the tail areas of the list for over-representation of various functional classes. Alternatively, one monitors the average differential expression level of genes belonging to a given functional class. So far these two types of method have not been combined. RESULTS: We introduce a scoring function, Gene Set Z-score (GSZ), for the analysis of functional class over-representation that combines two previous analysis methods. GSZ encompasses popular functions such as correlation, hypergeometric test, Max-Mean and Random Sets as limiting cases. GSZ is stable against changes in class size as well as across different positions of the analysed gene list in tests with randomized data. GSZ shows the best overall performance in a detailed comparison to popular functions using artificial data. Likewise, GSZ stands out in a cross-validation of methods using split real data. A comparison of empirical p-values further shows a strong difference in favour of GSZ, which clearly reports better p-values for top classes than the other methods. Furthermore, GSZ detects relevant biological themes that are missed by the other methods. These observations also hold when comparing GSZ with popular program packages. CONCLUSION: GSZ and improved versions of earlier methods are a useful contribution to the analysis of differential gene expression. The methods and supplementary material are available from the website http://ekhidna.biocenter.helsinki.fi/users/petri/public/GSZ/GSZscore.html.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N229f029387ee43e48f5e7cd56e28f8f5
40 N39430310a2d04c5892d0c16c23b9a2a5
41 sg:journal.1023786
42 schema:name Robust extraction of functional signals from gene set analysis using a generalized threshold free scoring function
43 schema:pagination 307
44 schema:productId N352c28d9478e430fa8a64792215724b2
45 N707a08621201474eb30bd9aa2ec98b9d
46 Nbd7bdd7690634e50bd2b8aaf2351d479
47 Ncf2301c768ea4b6e97900178e478a9d8
48 Nd96a51d9c7bb484593ec4b8b55ca519c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016640654
50 https://doi.org/10.1186/1471-2105-10-307
51 schema:sdDatePublished 2019-04-10T13:13
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ncce4719090ce49e4b3fe1261483ab993
54 schema:url http://link.springer.com/10.1186/1471-2105-10-307
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N229f029387ee43e48f5e7cd56e28f8f5 schema:volumeNumber 10
59 rdf:type schema:PublicationVolume
60 N345174372fe244f0841fa96afdee6b70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Software
62 rdf:type schema:DefinedTerm
63 N352c28d9478e430fa8a64792215724b2 schema:name readcube_id
64 schema:value 4f49a584f48a792e3d4146753cd1a2b22b4e25dc0724a5712722363a1af439f4
65 rdf:type schema:PropertyValue
66 N39430310a2d04c5892d0c16c23b9a2a5 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N3cb12168f97942e5b6534e68491b7582 rdf:first sg:person.0774703214.54
69 rdf:rest rdf:nil
70 N5e1e1c75edb144ed8412049e4501d747 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Gene Expression Profiling
72 rdf:type schema:DefinedTerm
73 N671ae2ac6e694a65a6d955df63b32d16 rdf:first sg:person.0753733617.28
74 rdf:rest N3cb12168f97942e5b6534e68491b7582
75 N6daee617fe1e495db14dcedaee868ba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Computational Biology
77 rdf:type schema:DefinedTerm
78 N707a08621201474eb30bd9aa2ec98b9d schema:name dimensions_id
79 schema:value pub.1016640654
80 rdf:type schema:PropertyValue
81 N7dd17eca77d140258d0fa6a49a16d296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Databases, Genetic
83 rdf:type schema:DefinedTerm
84 Nadf82eed21a14234b1e4cbe24c675c52 rdf:first sg:person.01276400376.20
85 rdf:rest N671ae2ac6e694a65a6d955df63b32d16
86 Nbd7bdd7690634e50bd2b8aaf2351d479 schema:name nlm_unique_id
87 schema:value 100965194
88 rdf:type schema:PropertyValue
89 Ncce4719090ce49e4b3fe1261483ab993 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Ncd04ddf5232941898bb6595d151cf436 rdf:first sg:person.01004444626.82
92 rdf:rest Nadf82eed21a14234b1e4cbe24c675c52
93 Ncf2301c768ea4b6e97900178e478a9d8 schema:name doi
94 schema:value 10.1186/1471-2105-10-307
95 rdf:type schema:PropertyValue
96 Nd96a51d9c7bb484593ec4b8b55ca519c schema:name pubmed_id
97 schema:value 19775443
98 rdf:type schema:PropertyValue
99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biological Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
103 schema:name Genetics
104 rdf:type schema:DefinedTerm
105 sg:journal.1023786 schema:issn 1471-2105
106 schema:name BMC Bioinformatics
107 rdf:type schema:Periodical
108 sg:person.01004444626.82 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
109 schema:familyName Törönen
110 schema:givenName Petri
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004444626.82
112 rdf:type schema:Person
113 sg:person.01276400376.20 schema:affiliation https://www.grid.ac/institutes/grid.452433.7
114 schema:familyName Ojala
115 schema:givenName Pauli J
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276400376.20
117 rdf:type schema:Person
118 sg:person.0753733617.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
119 schema:familyName Marttinen
120 schema:givenName Pekka
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
122 rdf:type schema:Person
123 sg:person.0774703214.54 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
124 schema:familyName Holm
125 schema:givenName Liisa
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774703214.54
127 rdf:type schema:Person
128 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
129 https://doi.org/10.1038/75556
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ng1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377811
132 https://doi.org/10.1038/ng1180
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1471-2105-10-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005164252
135 https://doi.org/10.1186/1471-2105-10-47
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1471-2105-5-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040588889
138 https://doi.org/10.1186/1471-2105-5-34
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1471-2105-7-538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034318296
141 https://doi.org/10.1186/1471-2105-7-538
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1471-2105-8-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009686329
144 https://doi.org/10.1186/1471-2105-8-9
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/gb-2003-4-10-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293245
147 https://doi.org/10.1186/gb-2003-4-10-r70
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/gb-2003-4-5-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292424
150 https://doi.org/10.1186/gb-2003-4-5-p3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
153 https://doi.org/10.1186/gb-2004-5-10-r80
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/gb-2007-8-5-r74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035612055
156 https://doi.org/10.1186/gb-2007-8-5-r74
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1075024918 schema:CreativeWork
159 https://doi.org/10.1016/j.toxlet.2005.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030400576
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.0506577102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743422
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/btg363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051276435
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/bti149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051185684
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/bioinformatics/btm051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025522417
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/28.1.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002804605
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/gkm980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755730
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/gni179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040526112
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1158/1078-0432.ccr-04-2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538662
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1214/07-aoas101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008688091
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1214/07-aoas104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021533100
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.452433.7 schema:alternateName Finnish Red Cross
188 schema:name Finnish Red Cross Blood Service Research and Development, Kivihaantie 7, 00310, Helsinki, Finland
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
191 schema:name Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014, Finland
192 Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Finland
193 The Holm Group, Biocenter II, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014, Finland
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...