Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules' View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

John Draper, David P Enot, David Parker, Manfred Beckmann, Stuart Snowdon, Wanchang Lin, Hassan Zubair

ABSTRACT

BACKGROUND: Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). RESULTS: Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. CONCLUSION: We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data. More... »

PAGES

227

References to SciGraph publications

  • 2008-03. High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry in NATURE PROTOCOLS
  • 2008-03. Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data in NATURE PROTOCOLS
  • 2008-10. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology in NATURE BIOTECHNOLOGY
  • 2006-07. The genetics of plant metabolism in NATURE GENETICS
  • 2007. Annotation of LC/ESI-MS Mass Signals in BIOINFORMATICS RESEARCH AND DEVELOPMENT
  • 2008-03. Assignment of MS-based metabolomic datasets via compound interaction pair mapping in METABOLOMICS
  • 2008-12. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements in BMC BIOINFORMATICS
  • 2006-06. Gas chromatography mass spectrometry–based metabolite profiling in plants in NATURE PROTOCOLS
  • 2008-06. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry in METABOLOMICS
  • 2006-12. Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2007-12. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry in BMC BIOINFORMATICS
  • 2008-03. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions in NATURE PROTOCOLS
  • 2009-03. A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics in METABOLOMICS
  • 2006-12. Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm in BMC BIOINFORMATICS
  • 2002-01. Metabolomics – the link between genotypes and phenotypes in PLANT MOLECULAR BIOLOGY
  • 2007-04. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry in NATURE PROTOCOLS
  • 2003-06. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting in NATURE BIOTECHNOLOGY
  • 2008-08. Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2105-10-227

    DOI

    http://dx.doi.org/10.1186/1471-2105-10-227

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010131855

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19622150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Mass, Electrospray Ionization", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Biological, Environmental and Rural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.493538.0", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Draper", 
            "givenName": "John", 
            "id": "sg:person.0661454703.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661454703.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biocrates Life Sciences (Austria)", 
              "id": "https://www.grid.ac/institutes/grid.431833.e", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK", 
                "BIOCRATES Life Sciences AG, Innrain 66, A-6020, Innsbruck, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Enot", 
            "givenName": "David P", 
            "id": "sg:person.01154404003.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154404003.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shell (United Kingdom)", 
              "id": "https://www.grid.ac/institutes/grid.419549.4", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK", 
                "Shell Global Solutions (UK), Shell Technology Centre Thornton, P.O. Box 1, CH1 3SH, Chester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parker", 
            "givenName": "David", 
            "id": "sg:person.01112131703.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112131703.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biological, Environmental and Rural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.493538.0", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beckmann", 
            "givenName": "Manfred", 
            "id": "sg:person.01174676510.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676510.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biological, Environmental and Rural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.493538.0", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snowdon", 
            "givenName": "Stuart", 
            "id": "sg:person.0675075216.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675075216.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biological, Environmental and Rural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.493538.0", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Wanchang", 
            "id": "sg:person.0775703303.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775703303.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biological, Environmental and Rural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.493538.0", 
              "name": [
                "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zubair", 
            "givenName": "Hassan", 
            "id": "sg:person.01011323616.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011323616.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/gkl1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000047019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001186870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2006.07.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005437558", 
              "https://doi.org/10.1016/j.jasms.2006.07.022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2006.07.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005437558", 
              "https://doi.org/10.1016/j.jasms.2006.07.022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2006.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005514513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008012631", 
              "https://doi.org/10.1038/nprot.2007.499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-71233-6_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010108924", 
              "https://doi.org/10.1007/978-3-540-71233-6_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jchromb.2005.07.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016025129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016814601", 
              "https://doi.org/10.1038/nprot.2007.500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-008-0104-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019348710", 
              "https://doi.org/10.1007/s11306-008-0104-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0503955102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022000485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022131184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022661426", 
              "https://doi.org/10.1186/1471-2105-8-105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b418288j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022837755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0605152103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024615468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025542786", 
              "https://doi.org/10.1038/nprot.2007.511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027511170", 
              "https://doi.org/10.1186/1471-2105-9-375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013713905833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027843923", 
              "https://doi.org/10.1023/a:1013713905833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.106.078428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028686253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029143382", 
              "https://doi.org/10.1038/nbt1492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029308877", 
              "https://doi.org/10.1038/nprot.2007.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029308877", 
              "https://doi.org/10.1038/nprot.2007.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0603352103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5511/plantbiotechnology.25.377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030674161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033471111", 
              "https://doi.org/10.1038/ng1815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033471111", 
              "https://doi.org/10.1038/ng1815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac062446p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033780872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac062446p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033780872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-008-0133-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034002251", 
              "https://doi.org/10.1007/s11306-008-0133-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-007-0096-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034885525", 
              "https://doi.org/10.1007/s11306-007-0096-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036460337", 
              "https://doi.org/10.1038/nprot.2006.59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036460337", 
              "https://doi.org/10.1038/nprot.2006.59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036882549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038401295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2008.03434.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043037654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045172077", 
              "https://doi.org/10.1186/1471-2105-7-234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-008-2195-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048486098", 
              "https://doi.org/10.1007/s00216-008-2195-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-008-2195-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048486098", 
              "https://doi.org/10.1007/s00216-008-2195-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.anchem.1.031207.112945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049532416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051888256", 
              "https://doi.org/10.1038/nbt823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051888256", 
              "https://doi.org/10.1038/nbt823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052137120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051437y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053369488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051437y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053369488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac7024915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055069677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac7024915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055069677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0701842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055906460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jf0701842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055906460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/15362310260256882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059214992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.46-1485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073427594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077833362", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-12", 
        "datePublishedReg": "2009-12-01", 
        "description": "BACKGROUND: Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI).\nRESULTS: Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data.\nCONCLUSION: We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2105-10-227", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2759347", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023786", 
            "issn": [
              "1471-2105"
            ], 
            "name": "BMC Bioinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'", 
        "pagination": "227", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3044d8f287a0eacaa54f3d9bb86e2d8927ad0d28561dbedb9ae5093d7dfca969"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19622150"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100965194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2105-10-227"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010131855"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2105-10-227", 
          "https://app.dimensions.ai/details/publication/pub.1010131855"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2F1471-2105-10-227"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-227'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-227'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-227'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-227'


     

    This table displays all metadata directly associated to this object as RDF triples.

    280 TRIPLES      21 PREDICATES      75 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2105-10-227 schema:about N6c543227d6f94121a7cb16082dc60c4e
    2 Nba96d6c67edb49aba9a6634866378470
    3 Nc712a91ca812464ba3e1f04c71573dd3
    4 Neffbbec4e6b546709c18ea764b1c8374
    5 Nf80c1c84039541d6a7a51264af927de5
    6 anzsrc-for:03
    7 anzsrc-for:0301
    8 schema:author N8214c43773fc42f3af3d86d32d9c7829
    9 schema:citation sg:pub.10.1007/978-3-540-71233-6_29
    10 sg:pub.10.1007/s00216-008-2195-5
    11 sg:pub.10.1007/s11306-007-0096-9
    12 sg:pub.10.1007/s11306-008-0104-8
    13 sg:pub.10.1007/s11306-008-0133-3
    14 sg:pub.10.1016/j.jasms.2006.07.022
    15 sg:pub.10.1023/a:1013713905833
    16 sg:pub.10.1038/nbt1492
    17 sg:pub.10.1038/nbt823
    18 sg:pub.10.1038/ng1815
    19 sg:pub.10.1038/nprot.2006.59
    20 sg:pub.10.1038/nprot.2007.499
    21 sg:pub.10.1038/nprot.2007.500
    22 sg:pub.10.1038/nprot.2007.511
    23 sg:pub.10.1038/nprot.2007.95
    24 sg:pub.10.1186/1471-2105-7-234
    25 sg:pub.10.1186/1471-2105-8-105
    26 sg:pub.10.1186/1471-2105-9-375
    27 https://app.dimensions.ai/details/publication/pub.1077833362
    28 https://doi.org/10.1016/j.jchromb.2005.07.049
    29 https://doi.org/10.1016/j.tibtech.2006.10.006
    30 https://doi.org/10.1021/ac051437y
    31 https://doi.org/10.1021/ac062446p
    32 https://doi.org/10.1021/ac7024915
    33 https://doi.org/10.1021/jf0701842
    34 https://doi.org/10.1039/b418288j
    35 https://doi.org/10.1073/pnas.0503955102
    36 https://doi.org/10.1073/pnas.0603352103
    37 https://doi.org/10.1073/pnas.0605152103
    38 https://doi.org/10.1089/15362310260256882
    39 https://doi.org/10.1093/bioinformatics/bth270
    40 https://doi.org/10.1093/nar/gkl1031
    41 https://doi.org/10.1093/nar/gkl838
    42 https://doi.org/10.1093/nar/gkm835
    43 https://doi.org/10.1093/nar/gkm900
    44 https://doi.org/10.1093/nar/gkn810
    45 https://doi.org/10.1104/pp.106.078428
    46 https://doi.org/10.1111/j.1365-313x.2008.03434.x
    47 https://doi.org/10.1146/annurev.anchem.1.031207.112945
    48 https://doi.org/10.5511/plantbiotechnology.25.377
    49 https://doi.org/10.5860/choice.46-1485
    50 schema:datePublished 2009-12
    51 schema:datePublishedReg 2009-12-01
    52 schema:description BACKGROUND: Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). RESULTS: Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. CONCLUSION: We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N0f1e2bc905e04c66a9f458f80aab5a8e
    57 N80b0c37461774c5ea32d1a307cd4e5d4
    58 sg:journal.1023786
    59 schema:name Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'
    60 schema:pagination 227
    61 schema:productId N057a46efce4347b59cdb7f7b6b5b4125
    62 N344305fc91fe44c9bb8a9d9bb5c29530
    63 N56db4de0f5f44989acd5f2f2f8842535
    64 N5f1af2bfdd464677a8e974df131fe79f
    65 Nfb34645501c24778bfe2b3b65af2c772
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131855
    67 https://doi.org/10.1186/1471-2105-10-227
    68 schema:sdDatePublished 2019-04-11T09:30
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Ndd562a857c784ebf9f555dff7a920d57
    71 schema:url https://link.springer.com/10.1186%2F1471-2105-10-227
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N0304c8a12dc24f73bf5e622c4cd7a81f rdf:first sg:person.0775703303.51
    76 rdf:rest N2a86604682dd4596b4788c761f2ce722
    77 N057a46efce4347b59cdb7f7b6b5b4125 schema:name dimensions_id
    78 schema:value pub.1010131855
    79 rdf:type schema:PropertyValue
    80 N0f1e2bc905e04c66a9f458f80aab5a8e schema:volumeNumber 10
    81 rdf:type schema:PublicationVolume
    82 N2a86604682dd4596b4788c761f2ce722 rdf:first sg:person.01011323616.04
    83 rdf:rest rdf:nil
    84 N344305fc91fe44c9bb8a9d9bb5c29530 schema:name pubmed_id
    85 schema:value 19622150
    86 rdf:type schema:PropertyValue
    87 N3ef48a2ce5704dd2b96cf541f9916f15 rdf:first sg:person.01112131703.73
    88 rdf:rest Nf14c4184b27e4468bbf6493194d0ef7d
    89 N56db4de0f5f44989acd5f2f2f8842535 schema:name nlm_unique_id
    90 schema:value 100965194
    91 rdf:type schema:PropertyValue
    92 N5f1af2bfdd464677a8e974df131fe79f schema:name readcube_id
    93 schema:value 3044d8f287a0eacaa54f3d9bb86e2d8927ad0d28561dbedb9ae5093d7dfca969
    94 rdf:type schema:PropertyValue
    95 N6c543227d6f94121a7cb16082dc60c4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Software
    97 rdf:type schema:DefinedTerm
    98 N80b0c37461774c5ea32d1a307cd4e5d4 schema:issueNumber 1
    99 rdf:type schema:PublicationIssue
    100 N8214c43773fc42f3af3d86d32d9c7829 rdf:first sg:person.0661454703.18
    101 rdf:rest Nacfe97868c3a4b75874ca303b6bedf92
    102 N9620c737267f4a599b89514238267485 rdf:first sg:person.0675075216.06
    103 rdf:rest N0304c8a12dc24f73bf5e622c4cd7a81f
    104 Nacfe97868c3a4b75874ca303b6bedf92 rdf:first sg:person.01154404003.23
    105 rdf:rest N3ef48a2ce5704dd2b96cf541f9916f15
    106 Nba96d6c67edb49aba9a6634866378470 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Spectrometry, Mass, Electrospray Ionization
    108 rdf:type schema:DefinedTerm
    109 Nc712a91ca812464ba3e1f04c71573dd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Databases, Factual
    111 rdf:type schema:DefinedTerm
    112 Ndd562a857c784ebf9f555dff7a920d57 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 Neffbbec4e6b546709c18ea764b1c8374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Metabolomics
    116 rdf:type schema:DefinedTerm
    117 Nf14c4184b27e4468bbf6493194d0ef7d rdf:first sg:person.01174676510.09
    118 rdf:rest N9620c737267f4a599b89514238267485
    119 Nf80c1c84039541d6a7a51264af927de5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Computational Biology
    121 rdf:type schema:DefinedTerm
    122 Nfb34645501c24778bfe2b3b65af2c772 schema:name doi
    123 schema:value 10.1186/1471-2105-10-227
    124 rdf:type schema:PropertyValue
    125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Chemical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Analytical Chemistry
    130 rdf:type schema:DefinedTerm
    131 sg:grant.2759347 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2105-10-227
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1023786 schema:issn 1471-2105
    134 schema:name BMC Bioinformatics
    135 rdf:type schema:Periodical
    136 sg:person.01011323616.04 schema:affiliation https://www.grid.ac/institutes/grid.493538.0
    137 schema:familyName Zubair
    138 schema:givenName Hassan
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011323616.04
    140 rdf:type schema:Person
    141 sg:person.01112131703.73 schema:affiliation https://www.grid.ac/institutes/grid.419549.4
    142 schema:familyName Parker
    143 schema:givenName David
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112131703.73
    145 rdf:type schema:Person
    146 sg:person.01154404003.23 schema:affiliation https://www.grid.ac/institutes/grid.431833.e
    147 schema:familyName Enot
    148 schema:givenName David P
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154404003.23
    150 rdf:type schema:Person
    151 sg:person.01174676510.09 schema:affiliation https://www.grid.ac/institutes/grid.493538.0
    152 schema:familyName Beckmann
    153 schema:givenName Manfred
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676510.09
    155 rdf:type schema:Person
    156 sg:person.0661454703.18 schema:affiliation https://www.grid.ac/institutes/grid.493538.0
    157 schema:familyName Draper
    158 schema:givenName John
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661454703.18
    160 rdf:type schema:Person
    161 sg:person.0675075216.06 schema:affiliation https://www.grid.ac/institutes/grid.493538.0
    162 schema:familyName Snowdon
    163 schema:givenName Stuart
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675075216.06
    165 rdf:type schema:Person
    166 sg:person.0775703303.51 schema:affiliation https://www.grid.ac/institutes/grid.493538.0
    167 schema:familyName Lin
    168 schema:givenName Wanchang
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775703303.51
    170 rdf:type schema:Person
    171 sg:pub.10.1007/978-3-540-71233-6_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010108924
    172 https://doi.org/10.1007/978-3-540-71233-6_29
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00216-008-2195-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486098
    175 https://doi.org/10.1007/s00216-008-2195-5
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11306-007-0096-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034885525
    178 https://doi.org/10.1007/s11306-007-0096-9
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11306-008-0104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019348710
    181 https://doi.org/10.1007/s11306-008-0104-8
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11306-008-0133-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034002251
    184 https://doi.org/10.1007/s11306-008-0133-3
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1016/j.jasms.2006.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005437558
    187 https://doi.org/10.1016/j.jasms.2006.07.022
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1023/a:1013713905833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843923
    190 https://doi.org/10.1023/a:1013713905833
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nbt1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029143382
    193 https://doi.org/10.1038/nbt1492
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nbt823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051888256
    196 https://doi.org/10.1038/nbt823
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ng1815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471111
    199 https://doi.org/10.1038/ng1815
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nprot.2006.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460337
    202 https://doi.org/10.1038/nprot.2006.59
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nprot.2007.499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008012631
    205 https://doi.org/10.1038/nprot.2007.499
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nprot.2007.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016814601
    208 https://doi.org/10.1038/nprot.2007.500
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nprot.2007.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542786
    211 https://doi.org/10.1038/nprot.2007.511
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nprot.2007.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308877
    214 https://doi.org/10.1038/nprot.2007.95
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1471-2105-7-234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045172077
    217 https://doi.org/10.1186/1471-2105-7-234
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/1471-2105-8-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022661426
    220 https://doi.org/10.1186/1471-2105-8-105
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/1471-2105-9-375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027511170
    223 https://doi.org/10.1186/1471-2105-9-375
    224 rdf:type schema:CreativeWork
    225 https://app.dimensions.ai/details/publication/pub.1077833362 schema:CreativeWork
    226 https://doi.org/10.1016/j.jchromb.2005.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025129
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.tibtech.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514513
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1021/ac051437y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369488
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1021/ac062446p schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780872
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1021/ac7024915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055069677
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1021/jf0701842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055906460
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1039/b418288j schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837755
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.0503955102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022000485
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1073/pnas.0603352103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540789
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1073/pnas.0605152103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024615468
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1089/15362310260256882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059214992
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/bth270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052137120
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/nar/gkl1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000047019
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nar/gkl838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022131184
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/nar/gkm835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001186870
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkm900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401295
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkn810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036882549
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1104/pp.106.078428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028686253
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1111/j.1365-313x.2008.03434.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043037654
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1146/annurev.anchem.1.031207.112945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532416
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.5511/plantbiotechnology.25.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030674161
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.5860/choice.46-1485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073427594
    269 rdf:type schema:CreativeWork
    270 https://www.grid.ac/institutes/grid.419549.4 schema:alternateName Shell (United Kingdom)
    271 schema:name Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK
    272 Shell Global Solutions (UK), Shell Technology Centre Thornton, P.O. Box 1, CH1 3SH, Chester, UK
    273 rdf:type schema:Organization
    274 https://www.grid.ac/institutes/grid.431833.e schema:alternateName Biocrates Life Sciences (Austria)
    275 schema:name BIOCRATES Life Sciences AG, Innrain 66, A-6020, Innsbruck, Austria
    276 Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK
    277 rdf:type schema:Organization
    278 https://www.grid.ac/institutes/grid.493538.0 schema:alternateName Institute of Biological, Environmental and Rural Sciences
    279 schema:name Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, SY23 3DA, Aberystwyth, UK
    280 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...