Validating subcellular localization prediction tools with mycobacterial proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05-07

AUTHORS

Daniel Restrepo-Montoya, Carolina Vizcaíno, Luis F Niño, Marisol Ocampo, Manuel E Patarroyo, Manuel A Patarroyo

ABSTRACT

BACKGROUND: The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins. RESULTS: A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out. CONCLUSION: Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2.5 presented the highest metrics, it should be taken into account that this tool was trained using all proteins reported in SWISS-PROT, which includes the protein set tested in this study, either as a BLAST search or as a training model. More... »

PAGES

134-134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2105-10-134

DOI

http://dx.doi.org/10.1186/1471-2105-10-134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053097004

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19422713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.412191.e", 
          "name": [
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia (FIDIC), Carrera 50 No, 26-20 Bogot\u00e1 DC, Colombia", 
            "Intelligent Systems Research Laboratory (LISI), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogot\u00e1 DC, Colombia", 
            "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Restrepo-Montoya", 
        "givenName": "Daniel", 
        "id": "sg:person.0767765751.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.412191.e", 
          "name": [
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia (FIDIC), Carrera 50 No, 26-20 Bogot\u00e1 DC, Colombia", 
            "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vizca\u00edno", 
        "givenName": "Carolina", 
        "id": "sg:person.0747542035.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747542035.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Intelligent Systems Research Laboratory (LISI), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogot\u00e1 DC, Colombia", 
            "Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni\u00f1o", 
        "givenName": "Luis F", 
        "id": "sg:person.011066666273.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.412191.e", 
          "name": [
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia (FIDIC), Carrera 50 No, 26-20 Bogot\u00e1 DC, Colombia", 
            "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ocampo", 
        "givenName": "Marisol", 
        "id": "sg:person.01132437363.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132437363.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Medicine, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia (FIDIC), Carrera 50 No, 26-20 Bogot\u00e1 DC, Colombia", 
            "School of Medicine, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel E", 
        "id": "sg:person.011340230117.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.412191.e", 
          "name": [
            "Fundaci\u00f3n Instituto de Inmunolog\u00eda de Colombia (FIDIC), Carrera 50 No, 26-20 Bogot\u00e1 DC, Colombia", 
            "School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogot\u00e1 DC, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarroyo", 
        "givenName": "Manuel A", 
        "id": "sg:person.013576664717.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052392582", 
          "https://doi.org/10.1038/nrmicro1494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041755895", 
          "https://doi.org/10.1186/1471-2105-7-415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050649071", 
          "https://doi.org/10.1186/1471-2105-6-174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030190479", 
          "https://doi.org/10.1186/1471-2105-8-420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036012600", 
          "https://doi.org/10.1186/1471-2105-6-256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402439", 
          "https://doi.org/10.1038/nprot.2007.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-22581-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450103", 
          "https://doi.org/10.1007/978-3-662-22581-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040865775", 
          "https://doi.org/10.1186/1471-2105-8-337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044447875", 
          "https://doi.org/10.1186/1471-2105-6-167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05-07", 
    "datePublishedReg": "2009-05-07", 
    "description": "BACKGROUND: The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins.\nRESULTS: A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out.\nCONCLUSION: Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2.5 presented the highest metrics, it should be taken into account that this tool was trained using all proteins reported in SWISS-PROT, which includes the protein set tested in this study, either as a BLAST search or as a training model.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2105-10-134", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023786", 
        "issn": [
          "1471-2105"
        ], 
        "name": "BMC Bioinformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "Matthews correlation coefficient", 
      "feature-based approach", 
      "training data sets", 
      "feature-based classifier", 
      "computational tools", 
      "data sets", 
      "Swiss-Prot", 
      "training data", 
      "localization approach", 
      "localization tool", 
      "higher metrics", 
      "good predictive performance", 
      "subcellular localization", 
      "initial set", 
      "classifier", 
      "validation metrics", 
      "proteome annotation", 
      "MCC values", 
      "PSORTb v.", 
      "training model", 
      "mycobacterial proteins", 
      "predictive performance", 
      "protein subcellular localization", 
      "set", 
      "metrics", 
      "different bioinformatic approaches", 
      "tool", 
      "validation set", 
      "secreted bacterial protein", 
      "prediction tools", 
      "new drug targets", 
      "search", 
      "annotation", 
      "good tool", 
      "bioinformatics approach", 
      "protein sets", 
      "bacterial proteins", 
      "homology search", 
      "BLAST search", 
      "high recognition", 
      "drug targets", 
      "protein", 
      "classification", 
      "computational predictions", 
      "recognition", 
      "terms of sensitivity", 
      "prediction", 
      "general localization", 
      "performance", 
      "methodology", 
      "localization", 
      "true negatives", 
      "key importance", 
      "Phobius", 
      "correlation coefficient", 
      "specificity", 
      "model", 
      "data", 
      "results", 
      "negatives", 
      "one", 
      "terms", 
      "use", 
      "vaccine candidates", 
      "identification", 
      "target", 
      "predictive specificity", 
      "ability", 
      "account", 
      "identity", 
      "candidates", 
      "values", 
      "importance", 
      "sensitivity", 
      "higher values", 
      "approach", 
      "coefficient", 
      "study", 
      "v.", 
      "years", 
      "dispersion sensitivity", 
      "highest predictive specificity", 
      "mycobacterial proteins' subcellular localization", 
      "subcellular localization classifiers", 
      "localization classifiers", 
      "TatP 1.0", 
      "LipoP 1.0", 
      "PA-SUB 2.5", 
      "Gpos-PLoc", 
      "TBpred training data", 
      "final validation set", 
      "subcellular localization approaches", 
      "general localization tool", 
      "SignalP 2.0", 
      "subcellular localization prediction tools", 
      "localization prediction tools"
    ], 
    "name": "Validating subcellular localization prediction tools with mycobacterial proteins", 
    "pagination": "134-134", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053097004"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2105-10-134"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19422713"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2105-10-134", 
      "https://app.dimensions.ai/details/publication/pub.1053097004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2105-10-134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2105-10-134'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      22 PREDICATES      137 URIs      120 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2105-10-134 schema:about N2bb1fb3805714e61ba05144c8e7bf07e
2 N340797b176854b008db4aebbb3976b2a
3 N79a4682c266f481f9ea4048d46fdd58a
4 Nacb71d0afe2b4b3ba1250c8e4480b409
5 Nc92bfbd678d14379bfb1a2834b05c466
6 Ncde081272a04492e9af7b268b0b75fb9
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N7de060f65ff841928c8313271db9ee7f
10 schema:citation sg:pub.10.1007/978-3-662-22581-3
11 sg:pub.10.1038/nprot.2007.131
12 sg:pub.10.1038/nrmicro1494
13 sg:pub.10.1186/1471-2105-6-167
14 sg:pub.10.1186/1471-2105-6-174
15 sg:pub.10.1186/1471-2105-6-256
16 sg:pub.10.1186/1471-2105-7-415
17 sg:pub.10.1186/1471-2105-8-337
18 sg:pub.10.1186/1471-2105-8-420
19 schema:datePublished 2009-05-07
20 schema:datePublishedReg 2009-05-07
21 schema:description BACKGROUND: The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins. RESULTS: A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out. CONCLUSION: Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2.5 presented the highest metrics, it should be taken into account that this tool was trained using all proteins reported in SWISS-PROT, which includes the protein set tested in this study, either as a BLAST search or as a training model.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N1800bf1e301f4f8a8d623679176b1964
26 N6a7324a716704183b9204c0dc32d89be
27 sg:journal.1023786
28 schema:keywords BLAST search
29 Gpos-PLoc
30 LipoP 1.0
31 MCC values
32 Matthews correlation coefficient
33 PA-SUB 2.5
34 PSORTb v.
35 Phobius
36 SignalP 2.0
37 Swiss-Prot
38 TBpred training data
39 TatP 1.0
40 ability
41 account
42 annotation
43 approach
44 bacterial proteins
45 bioinformatics approach
46 candidates
47 classification
48 classifier
49 coefficient
50 computational predictions
51 computational tools
52 correlation coefficient
53 data
54 data sets
55 different bioinformatic approaches
56 dispersion sensitivity
57 drug targets
58 feature-based approach
59 feature-based classifier
60 final validation set
61 general localization
62 general localization tool
63 good predictive performance
64 good tool
65 high recognition
66 higher metrics
67 higher values
68 highest predictive specificity
69 homology search
70 identification
71 identity
72 importance
73 initial set
74 key importance
75 localization
76 localization approach
77 localization classifiers
78 localization prediction tools
79 localization tool
80 methodology
81 metrics
82 model
83 mycobacterial proteins
84 mycobacterial proteins' subcellular localization
85 negatives
86 new drug targets
87 one
88 performance
89 prediction
90 prediction tools
91 predictive performance
92 predictive specificity
93 protein
94 protein sets
95 protein subcellular localization
96 proteome annotation
97 recognition
98 results
99 search
100 secreted bacterial protein
101 sensitivity
102 set
103 specificity
104 study
105 subcellular localization
106 subcellular localization approaches
107 subcellular localization classifiers
108 subcellular localization prediction tools
109 target
110 terms
111 terms of sensitivity
112 tool
113 training data
114 training data sets
115 training model
116 true negatives
117 use
118 v.
119 vaccine candidates
120 validation metrics
121 validation set
122 values
123 years
124 schema:name Validating subcellular localization prediction tools with mycobacterial proteins
125 schema:pagination 134-134
126 schema:productId N0b5b47e32f704275866784be0788116a
127 N4f916c65b90d4dd69159c3d34c6ceabb
128 N94df9a14ed2448fe9b7e338e2af9e139
129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097004
130 https://doi.org/10.1186/1471-2105-10-134
131 schema:sdDatePublished 2021-11-01T18:13
132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
133 schema:sdPublisher Ncf133c57111e4f979a238ecd5d93fef1
134 schema:url https://doi.org/10.1186/1471-2105-10-134
135 sgo:license sg:explorer/license/
136 sgo:sdDataset articles
137 rdf:type schema:ScholarlyArticle
138 N0b5b47e32f704275866784be0788116a schema:name doi
139 schema:value 10.1186/1471-2105-10-134
140 rdf:type schema:PropertyValue
141 N1800bf1e301f4f8a8d623679176b1964 schema:volumeNumber 10
142 rdf:type schema:PublicationVolume
143 N2bb1fb3805714e61ba05144c8e7bf07e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Mycobacterium
145 rdf:type schema:DefinedTerm
146 N340797b176854b008db4aebbb3976b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Databases, Protein
148 rdf:type schema:DefinedTerm
149 N421f16bc37d84e7ba672d34d3cb27610 rdf:first sg:person.0747542035.23
150 rdf:rest N4af5b9d5a6fb4367a15cb8d0f3cda4a4
151 N4af5b9d5a6fb4367a15cb8d0f3cda4a4 rdf:first sg:person.011066666273.24
152 rdf:rest Ndd5b83eb88a14361b88ddb80d39bf5c1
153 N4f916c65b90d4dd69159c3d34c6ceabb schema:name dimensions_id
154 schema:value pub.1053097004
155 rdf:type schema:PropertyValue
156 N6a7324a716704183b9204c0dc32d89be schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 N79a4682c266f481f9ea4048d46fdd58a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Algorithms
160 rdf:type schema:DefinedTerm
161 N7b970bc12d114e058a8c741115b7aa47 rdf:first sg:person.011340230117.85
162 rdf:rest N7d7ea80c247743338bb30aba15b2f5c6
163 N7d7ea80c247743338bb30aba15b2f5c6 rdf:first sg:person.013576664717.29
164 rdf:rest rdf:nil
165 N7de060f65ff841928c8313271db9ee7f rdf:first sg:person.0767765751.89
166 rdf:rest N421f16bc37d84e7ba672d34d3cb27610
167 N94df9a14ed2448fe9b7e338e2af9e139 schema:name pubmed_id
168 schema:value 19422713
169 rdf:type schema:PropertyValue
170 Nacb71d0afe2b4b3ba1250c8e4480b409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Bacterial Proteins
172 rdf:type schema:DefinedTerm
173 Nc92bfbd678d14379bfb1a2834b05c466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Software
175 rdf:type schema:DefinedTerm
176 Ncde081272a04492e9af7b268b0b75fb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Computational Biology
178 rdf:type schema:DefinedTerm
179 Ncf133c57111e4f979a238ecd5d93fef1 schema:name Springer Nature - SN SciGraph project
180 rdf:type schema:Organization
181 Ndd5b83eb88a14361b88ddb80d39bf5c1 rdf:first sg:person.01132437363.21
182 rdf:rest N7b970bc12d114e058a8c741115b7aa47
183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biological Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
187 schema:name Biochemistry and Cell Biology
188 rdf:type schema:DefinedTerm
189 sg:journal.1023786 schema:issn 1471-2105
190 schema:name BMC Bioinformatics
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.011066666273.24 schema:affiliation grid-institutes:grid.10689.36
194 schema:familyName Niño
195 schema:givenName Luis F
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066666273.24
197 rdf:type schema:Person
198 sg:person.01132437363.21 schema:affiliation grid-institutes:grid.412191.e
199 schema:familyName Ocampo
200 schema:givenName Marisol
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132437363.21
202 rdf:type schema:Person
203 sg:person.011340230117.85 schema:affiliation grid-institutes:grid.10689.36
204 schema:familyName Patarroyo
205 schema:givenName Manuel E
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340230117.85
207 rdf:type schema:Person
208 sg:person.013576664717.29 schema:affiliation grid-institutes:grid.412191.e
209 schema:familyName Patarroyo
210 schema:givenName Manuel A
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576664717.29
212 rdf:type schema:Person
213 sg:person.0747542035.23 schema:affiliation grid-institutes:grid.412191.e
214 schema:familyName Vizcaíno
215 schema:givenName Carolina
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747542035.23
217 rdf:type schema:Person
218 sg:person.0767765751.89 schema:affiliation grid-institutes:grid.412191.e
219 schema:familyName Restrepo-Montoya
220 schema:givenName Daniel
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767765751.89
222 rdf:type schema:Person
223 sg:pub.10.1007/978-3-662-22581-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027450103
224 https://doi.org/10.1007/978-3-662-22581-3
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nprot.2007.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402439
227 https://doi.org/10.1038/nprot.2007.131
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nrmicro1494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052392582
230 https://doi.org/10.1038/nrmicro1494
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2105-6-167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447875
233 https://doi.org/10.1186/1471-2105-6-167
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2105-6-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050649071
236 https://doi.org/10.1186/1471-2105-6-174
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2105-6-256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036012600
239 https://doi.org/10.1186/1471-2105-6-256
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1471-2105-7-415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041755895
242 https://doi.org/10.1186/1471-2105-7-415
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1471-2105-8-337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040865775
245 https://doi.org/10.1186/1471-2105-8-337
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1471-2105-8-420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030190479
248 https://doi.org/10.1186/1471-2105-8-420
249 rdf:type schema:CreativeWork
250 grid-institutes:grid.10689.36 schema:alternateName Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogotá DC, Colombia
251 School of Medicine, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá DC, Colombia
252 schema:name Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20 Bogotá DC, Colombia
253 Intelligent Systems Research Laboratory (LISI), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogotá DC, Colombia
254 Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogotá DC, Colombia
255 School of Medicine, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá DC, Colombia
256 rdf:type schema:Organization
257 grid-institutes:grid.412191.e schema:alternateName School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogotá DC, Colombia
258 schema:name Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20 Bogotá DC, Colombia
259 Intelligent Systems Research Laboratory (LISI), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogotá DC, Colombia
260 Research Group on Combinatorial Algorithms (ALGOS-UN), Universidad Nacional de Colombia, Carrera 45 No, 26-85, Bogotá DC, Colombia
261 School of Medicine, Universidad del Rosario, Carrera 24 No, 63C-69, Bogotá DC, Colombia
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...