Ontology type: schema:ScholarlyArticle Open Access: True
2006-12
AUTHORSHeather MacPherson, Pamela A Keir, Carol J Edwards, Sheila Webb, Julia R Dorin
ABSTRACTBACKGROUND: Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. METHODS: Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. RESULTS: The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. CONCLUSION: The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo. More... »
PAGES145
http://scigraph.springernature.com/pub.10.1186/1465-9921-7-145
DOIhttp://dx.doi.org/10.1186/1465-9921-7-145
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038242037
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/17177981
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cardiorespiratory Medicine and Haematology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biomarkers",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bone Marrow Cells",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bone Marrow Transplantation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Differentiation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cells, Cultured",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Epithelial Cells",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Leukocyte Common Antigens",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Respiratory Mucosa",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Trachea",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tracheal Diseases",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Western General Hospital",
"id": "https://www.grid.ac/institutes/grid.417068.c",
"name": [
"MRC Human Genetics Unit, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "MacPherson",
"givenName": "Heather",
"id": "sg:person.01023071616.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023071616.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Western General Hospital",
"id": "https://www.grid.ac/institutes/grid.417068.c",
"name": [
"MRC Human Genetics Unit, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "Keir",
"givenName": "Pamela A",
"id": "sg:person.01265163030.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265163030.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Western General Hospital",
"id": "https://www.grid.ac/institutes/grid.417068.c",
"name": [
"MRC Human Genetics Unit, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "Edwards",
"givenName": "Carol J",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Western General Hospital",
"id": "https://www.grid.ac/institutes/grid.417068.c",
"name": [
"MRC Human Genetics Unit, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "Webb",
"givenName": "Sheila",
"id": "sg:person.01234307221.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234307221.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Western General Hospital",
"id": "https://www.grid.ac/institutes/grid.417068.c",
"name": [
"MRC Human Genetics Unit, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "Dorin",
"givenName": "Julia R",
"id": "sg:person.01053664373.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053664373.40"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1172/jci21301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001156352"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/path.1682",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007433431"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/ajrcmb.20.6.3475",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007784310"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0092-8674(01)00328-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009943717"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1365-2184.2004.00300.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010815781"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05282",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011740155",
"https://doi.org/10.1038/nature05282"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05282",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011740155",
"https://doi.org/10.1038/nature05282"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05282",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011740155",
"https://doi.org/10.1038/nature05282"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0092-8674(82)90400-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012378105"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0003-2697(87)90021-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013321498"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/00062752-200305000-00003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014206842"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/00062752-200305000-00003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014206842"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/00062752-200305000-00003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014206842"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0301-472x(02)00931-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025587809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0301-472x(02)00931-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025587809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0175rc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026332134"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0175rc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026332134"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0508593103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027104649"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymthe.2005.09.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036917113"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037722033",
"https://doi.org/10.1038/nature02069"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037722033",
"https://doi.org/10.1038/nature02069"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/81326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039353607",
"https://doi.org/10.1038/81326"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/81326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039353607",
"https://doi.org/10.1038/81326"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1152/ajplung.00006.2006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040453106"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1242/jcs.02375",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040980756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1164/rccm.200502-309oc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042877223"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0510758103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043228323"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1084/jem.183.4.1797",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044033062"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0332oc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044304579"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0332oc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044304579"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/ajrcmb.24.6.4217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044521169"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nm963",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047367124",
"https://doi.org/10.1038/nm963"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nm963",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047367124",
"https://doi.org/10.1038/nm963"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0129oc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049086465"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1165/rcmb.2005-0129oc",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049086465"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature01531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053292933",
"https://doi.org/10.1038/nature01531"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature01531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053292933",
"https://doi.org/10.1038/nature01531"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1098925",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062449702"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.305.5680.27a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062585384"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1172/jci15182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063415340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1172/jci18847",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063416475"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1152/ajplung.2000.279.4.l766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074701860"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1074963614",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082983974",
"type": "CreativeWork"
}
],
"datePublished": "2006-12",
"datePublishedReg": "2006-12-01",
"description": "BACKGROUND: Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells.\nMETHODS: Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations.\nRESULTS: The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR.\nCONCLUSION: The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo.",
"genre": "research_article",
"id": "sg:pub.10.1186/1465-9921-7-145",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2752717",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1028525",
"issn": [
"1465-9921",
"1465-993X"
],
"name": "Respiratory Research",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"name": "Following damage, the majority of bone marrow-derived airway cells express an epithelial marker",
"pagination": "145",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b62c38d436eae4f9edd0ab884ab7ce1377b7e4fba9907891ce8060a3016fecfd"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"17177981"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101090633"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1465-9921-7-145"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038242037"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1465-9921-7-145",
"https://app.dimensions.ai/details/publication/pub.1038242037"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000506.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1186/1465-9921-7-145"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-145'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-145'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-145'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-145'
This table displays all metadata directly associated to this object as RDF triples.
253 TRIPLES
21 PREDICATES
75 URIs
35 LITERALS
23 BLANK NODES