Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Maren Zapke, Hans-Georg Topf, Martin Zenker, Rainer Kuth, Michael Deimling, Peter Kreisler, Manfred Rauh, Christophe Chefd'hotel, Bernhard Geiger, Thomas Rupprecht

ABSTRACT

BACKGROUND: Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI) is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment. METHODS: We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed. RESULTS: The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p < or = 0.001) was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized. CONCLUSION: With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment. More... »

PAGES

106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1465-9921-7-106

DOI

http://dx.doi.org/10.1186/1465-9921-7-106

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006652311

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16889671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asthma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Ventilation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Function Tests", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "University Children's Hospital, University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapke", 
        "givenName": "Maren", 
        "id": "sg:person.01000547107.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000547107.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "University Children's Hospital, University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Topf", 
        "givenName": "Hans-Georg", 
        "id": "sg:person.01306536316.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306536316.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "University Children's Hospital, University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zenker", 
        "givenName": "Martin", 
        "id": "sg:person.0773476645.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476645.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens medical solutions, Henkestr. 127, 91052, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuth", 
        "givenName": "Rainer", 
        "id": "sg:person.01071765712.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071765712.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens medical solutions, Henkestr. 127, 91052, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deimling", 
        "givenName": "Michael", 
        "id": "sg:person.0713057076.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713057076.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens medical solutions, Henkestr. 127, 91052, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreisler", 
        "givenName": "Peter", 
        "id": "sg:person.01170522617.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170522617.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "University Children's Hospital, University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauh", 
        "givenName": "Manfred", 
        "id": "sg:person.01353724420.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353724420.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, 755 College Road East, 08540-6632, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chefd'hotel", 
        "givenName": "Christophe", 
        "id": "sg:person.010725377525.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725377525.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, 755 College Road East, 08540-6632, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geiger", 
        "givenName": "Bernhard", 
        "id": "sg:person.016524036333.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524036333.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Children's Hospital;, Preuschwitzer Stra\u00dfe 101, D-95445, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rupprecht", 
        "givenName": "Thomas", 
        "id": "sg:person.014071560133.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071560133.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mpo.1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004735748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(89)90245-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007694494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-003-2215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008335307", 
          "https://doi.org/10.1007/s00330-003-2215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/424873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008561234", 
          "https://doi.org/10.1038/424873a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/424873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008561234", 
          "https://doi.org/10.1038/424873a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(01)00347-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010186111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.212.3.r99se20885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011987353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(00)00199-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016112892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019526078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002142-200306000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020049518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002142-200306000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020049518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(01)00417-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022891621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.3.r99fe08851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022995982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.125.1.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020830525823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031071624", 
          "https://doi.org/10.1023/a:1020830525823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199505000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035893151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199505000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035893151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mai.2003.1544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036386702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mai.2003.1544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036386702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910390423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045380664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(96)90940-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050444873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.155.5.2120964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069316372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-002-1404-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075176589", 
          "https://doi.org/10.1007/s00330-002-1404-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI) is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment.\nMETHODS: We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed.\nRESULTS: The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p < or = 0.001) was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized.\nCONCLUSION: With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1465-9921-7-106", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028525", 
        "issn": [
          "1465-9921", 
          "1465-993X"
        ], 
        "name": "Respiratory Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Magnetic resonance lung function \u2013 a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial", 
    "pagination": "106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1faf7d65668b7341d3e997e30e519d6d1f022cd3e3fa7c23f98aa7c0aec8123f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16889671"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101090633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1465-9921-7-106"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006652311"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1465-9921-7-106", 
      "https://app.dimensions.ai/details/publication/pub.1006652311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1465-9921-7-106"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-106'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-106'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-106'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-7-106'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      64 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1465-9921-7-106 schema:about N0cc01b07f4d44ef38ebdfa73bb22ee19
2 N154e02ef7de140bbba65d7b294dd6b89
3 N6a67937de1814addbde6b2a317588082
4 N77bd754048fe4f269736895692126cd1
5 N85ba1100d45a4c20ae7f7782faaf8411
6 N9cec586de5084fa493b5b0b05bc20ed3
7 Na58b504ff3634baab6f5a445012ed200
8 Nadcba357d96a4ea0893d3b40384a9510
9 Nb8ad554ca7114106adaa9881dd4764f5
10 Nba67d9cf21534a5c897f441202ccf197
11 Nd521bdfa329741fea29655baa80083c8
12 Nd6db38d696be4bde8e03b2a276fcb245
13 Nd8ec00a8e55a460f99cd756d7c5a9add
14 Ne26ab425fe3d4a139541271cd10a7899
15 Ne9aaf456a5694091adcc9c71ba7f115d
16 Nf63d5b8ac5874e2ea7f3c857acf55363
17 anzsrc-for:02
18 anzsrc-for:0299
19 schema:author N5264850b24464350a6ff0e7381ea03cd
20 schema:citation sg:pub.10.1007/s00330-002-1404-4
21 sg:pub.10.1007/s00330-003-2215-y
22 sg:pub.10.1023/a:1020830525823
23 sg:pub.10.1038/424873a
24 https://doi.org/10.1002/mpo.1247
25 https://doi.org/10.1002/mrm.10206
26 https://doi.org/10.1002/mrm.1910390423
27 https://doi.org/10.1016/0022-2364(89)90245-x
28 https://doi.org/10.1016/s0140-6736(96)90940-x
29 https://doi.org/10.1016/s0720-048x(00)00199-6
30 https://doi.org/10.1016/s0720-048x(01)00347-3
31 https://doi.org/10.1016/s0730-725x(01)00417-9
32 https://doi.org/10.1067/mai.2003.1544
33 https://doi.org/10.1097/00002142-200306000-00003
34 https://doi.org/10.1097/00004728-199505000-00023
35 https://doi.org/10.1148/radiology.210.3.r99fe08851
36 https://doi.org/10.1148/radiology.212.3.r99se20885
37 https://doi.org/10.1378/chest.125.1.173
38 https://doi.org/10.2214/ajr.155.5.2120964
39 schema:datePublished 2006-12
40 schema:datePublishedReg 2006-12-01
41 schema:description BACKGROUND: Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI) is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment. METHODS: We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed. RESULTS: The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p < or = 0.001) was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized. CONCLUSION: With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Nc5e048422f704087862758fe95d03d51
46 Nfed6a95a9c454e2db6c7f4eb060acd2b
47 sg:journal.1028525
48 schema:name Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial
49 schema:pagination 106
50 schema:productId N407ffe7984204aa0882664e2d8b44461
51 Na5d219afb70d402fb5c4eb129ecb9d82
52 Nad53a484e75f492dae7939ea7d8a3065
53 Nd0f935817b10486eb43e10a14f363789
54 Nf67f461fc1414cf593f4edee0dcb5d6e
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006652311
56 https://doi.org/10.1186/1465-9921-7-106
57 schema:sdDatePublished 2019-04-11T01:05
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N808724ef90a447f49d4262d434ba474c
60 schema:url http://link.springer.com/10.1186/1465-9921-7-106
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N056257c14c084ea9a8a73ee8d1f90e60 rdf:first sg:person.014071560133.74
65 rdf:rest rdf:nil
66 N096a6d1e2a344acf966f32b887b8378e rdf:first sg:person.016524036333.89
67 rdf:rest N056257c14c084ea9a8a73ee8d1f90e60
68 N0cc01b07f4d44ef38ebdfa73bb22ee19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Pilot Projects
70 rdf:type schema:DefinedTerm
71 N154e02ef7de140bbba65d7b294dd6b89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Radiography
73 rdf:type schema:DefinedTerm
74 N26f68142ec874305a723bcfd76012a40 rdf:first sg:person.01170522617.29
75 rdf:rest N961cf83dba094ae5ba5d50694fc480e8
76 N346a53ae8818426cb85b1e9057704b99 schema:name Children's Hospital;, Preuschwitzer Straße 101, D-95445, Bayreuth, Germany
77 rdf:type schema:Organization
78 N407ffe7984204aa0882664e2d8b44461 schema:name readcube_id
79 schema:value 1faf7d65668b7341d3e997e30e519d6d1f022cd3e3fa7c23f98aa7c0aec8123f
80 rdf:type schema:PropertyValue
81 N5264850b24464350a6ff0e7381ea03cd rdf:first sg:person.01000547107.03
82 rdf:rest Nf78babca58584a7f9d443f040d392f39
83 N6a67937de1814addbde6b2a317588082 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Image Processing, Computer-Assisted
85 rdf:type schema:DefinedTerm
86 N77bd754048fe4f269736895692126cd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Child, Preschool
88 rdf:type schema:DefinedTerm
89 N7da484f099d84e50a20dd8b6357b992d rdf:first sg:person.0713057076.13
90 rdf:rest N26f68142ec874305a723bcfd76012a40
91 N808724ef90a447f49d4262d434ba474c schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N85ba1100d45a4c20ae7f7782faaf8411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Respiratory Function Tests
95 rdf:type schema:DefinedTerm
96 N961cf83dba094ae5ba5d50694fc480e8 rdf:first sg:person.01353724420.71
97 rdf:rest Nfc35c54baca3472ab85bf686a6b3799a
98 N9cec586de5084fa493b5b0b05bc20ed3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Asthma
100 rdf:type schema:DefinedTerm
101 Na58b504ff3634baab6f5a445012ed200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Lung
103 rdf:type schema:DefinedTerm
104 Na5d219afb70d402fb5c4eb129ecb9d82 schema:name pubmed_id
105 schema:value 16889671
106 rdf:type schema:PropertyValue
107 Nad53a484e75f492dae7939ea7d8a3065 schema:name nlm_unique_id
108 schema:value 101090633
109 rdf:type schema:PropertyValue
110 Nadcba357d96a4ea0893d3b40384a9510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Magnetic Resonance Imaging
112 rdf:type schema:DefinedTerm
113 Nb8ad554ca7114106adaa9881dd4764f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Child
115 rdf:type schema:DefinedTerm
116 Nba67d9cf21534a5c897f441202ccf197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Adult
118 rdf:type schema:DefinedTerm
119 Nbd8b7b16f88b4399b2238e117f92175d rdf:first sg:person.01071765712.06
120 rdf:rest N7da484f099d84e50a20dd8b6357b992d
121 Nc5e048422f704087862758fe95d03d51 schema:volumeNumber 7
122 rdf:type schema:PublicationVolume
123 Nd0f935817b10486eb43e10a14f363789 schema:name doi
124 schema:value 10.1186/1465-9921-7-106
125 rdf:type schema:PropertyValue
126 Nd414636b87354a56821567422317f7a3 rdf:first sg:person.0773476645.92
127 rdf:rest Nbd8b7b16f88b4399b2238e117f92175d
128 Nd521bdfa329741fea29655baa80083c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 Nd6db38d696be4bde8e03b2a276fcb245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Phantoms, Imaging
133 rdf:type schema:DefinedTerm
134 Nd8ec00a8e55a460f99cd756d7c5a9add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 Ne26ab425fe3d4a139541271cd10a7899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adolescent
139 rdf:type schema:DefinedTerm
140 Ne9aaf456a5694091adcc9c71ba7f115d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 Nf63d5b8ac5874e2ea7f3c857acf55363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Pulmonary Ventilation
145 rdf:type schema:DefinedTerm
146 Nf67f461fc1414cf593f4edee0dcb5d6e schema:name dimensions_id
147 schema:value pub.1006652311
148 rdf:type schema:PropertyValue
149 Nf78babca58584a7f9d443f040d392f39 rdf:first sg:person.01306536316.09
150 rdf:rest Nd414636b87354a56821567422317f7a3
151 Nfc35c54baca3472ab85bf686a6b3799a rdf:first sg:person.010725377525.13
152 rdf:rest N096a6d1e2a344acf966f32b887b8378e
153 Nfed6a95a9c454e2db6c7f4eb060acd2b schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
156 schema:name Physical Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
159 schema:name Other Physical Sciences
160 rdf:type schema:DefinedTerm
161 sg:journal.1028525 schema:issn 1465-9921
162 1465-993X
163 schema:name Respiratory Research
164 rdf:type schema:Periodical
165 sg:person.01000547107.03 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
166 schema:familyName Zapke
167 schema:givenName Maren
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000547107.03
169 rdf:type schema:Person
170 sg:person.01071765712.06 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
171 schema:familyName Kuth
172 schema:givenName Rainer
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071765712.06
174 rdf:type schema:Person
175 sg:person.010725377525.13 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
176 schema:familyName Chefd'hotel
177 schema:givenName Christophe
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725377525.13
179 rdf:type schema:Person
180 sg:person.01170522617.29 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
181 schema:familyName Kreisler
182 schema:givenName Peter
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170522617.29
184 rdf:type schema:Person
185 sg:person.01306536316.09 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
186 schema:familyName Topf
187 schema:givenName Hans-Georg
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306536316.09
189 rdf:type schema:Person
190 sg:person.01353724420.71 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
191 schema:familyName Rauh
192 schema:givenName Manfred
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353724420.71
194 rdf:type schema:Person
195 sg:person.014071560133.74 schema:affiliation N346a53ae8818426cb85b1e9057704b99
196 schema:familyName Rupprecht
197 schema:givenName Thomas
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071560133.74
199 rdf:type schema:Person
200 sg:person.016524036333.89 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
201 schema:familyName Geiger
202 schema:givenName Bernhard
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524036333.89
204 rdf:type schema:Person
205 sg:person.0713057076.13 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
206 schema:familyName Deimling
207 schema:givenName Michael
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713057076.13
209 rdf:type schema:Person
210 sg:person.0773476645.92 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
211 schema:familyName Zenker
212 schema:givenName Martin
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773476645.92
214 rdf:type schema:Person
215 sg:pub.10.1007/s00330-002-1404-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075176589
216 https://doi.org/10.1007/s00330-002-1404-4
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00330-003-2215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008335307
219 https://doi.org/10.1007/s00330-003-2215-y
220 rdf:type schema:CreativeWork
221 sg:pub.10.1023/a:1020830525823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031071624
222 https://doi.org/10.1023/a:1020830525823
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/424873a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008561234
225 https://doi.org/10.1038/424873a
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/mpo.1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004735748
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/mrm.10206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019526078
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/mrm.1910390423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045380664
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/0022-2364(89)90245-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007694494
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0140-6736(96)90940-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050444873
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0720-048x(00)00199-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016112892
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0720-048x(01)00347-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010186111
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s0730-725x(01)00417-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022891621
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1067/mai.2003.1544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036386702
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1097/00002142-200306000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020049518
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1097/00004728-199505000-00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035893151
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1148/radiology.210.3.r99fe08851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022995982
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiology.212.3.r99se20885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011987353
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1378/chest.125.1.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027719374
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2214/ajr.155.5.2120964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069316372
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
258 schema:name Siemens Corporate Research, 755 College Road East, 08540-6632, Princeton, NJ, USA
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
261 schema:name University Children's Hospital, University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
264 schema:name Siemens medical solutions, Henkestr. 127, 91052, Erlangen, Germany
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...