High-resolution CT scoring system-based grading scale predicts the clinical outcomes in patients with idiopathic pulmonary fibrosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-30

AUTHORS

Keishi Oda, Hiroshi Ishimoto, Kazuhiro Yatera, Keisuke Naito, Takaaki Ogoshi, Kei Yamasaki, Tomotoshi Imanaga, Toru Tsuda, Hiroyuki Nakao, Toshinori Kawanami, Hiroshi Mukae

ABSTRACT

BackgroundThe 2011 idiopathic pulmonary fibrosis (IPF) guidelines are based on the diagnosis of IPF using only high-resolution computed tomography (HRCT). However, few studies have thus far reviewed the usefulness of the HRCT scoring system based on the grading scale provided in the guidelines. We retrospectively studied 98 patients with respect to assess the prognostic value of changes in HRCT findings using a new HRCT scoring system based on the grading scale published in the guidelines.MethodsConsecutive patients with IPF who were diagnosed using HRCT alone between January 2008 and January 2012 were evaluated. HRCT examinations and pulmonary function tests were performed at six-month intervals for the first year after diagnosis. The HRCT findings were evaluated using the new HRCT scoring system (HRCT fibrosis score) over time. The findings and survival rates were analyzed using a Kaplan-Meier analysis.ResultsThe HRCT fibrosis scores at six and 12 months after diagnosis were significantly increased compared to those observed at the initial diagnosis (p < 0.001). The patients with an elevated HRCT fibrosis score at six months based on a receiver operating characteristic (ROC) curves analysis had a poor prognosis (log-rank, hazard ratio [HR] 2.435, 95% CI 1.196-4.962; p = 0.0142). Furthermore, among the patients without marked changes in %FVC, those with an elevated score above the cut-off value had a poor prognosis (HR 2.192, 95% CI 1.003-4.791; p = 0.0491).ConclusionsOur data demonstrate that the HRCT scoring system based on the grading scale is useful for predicting the clinical outcomes of IPF and identifying patients with an adverse prognosis when used in combination with spirometry. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1465-9921-15-10

DOI

http://dx.doi.org/10.1186/1465-9921-15-10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015195178

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24479411


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Idiopathic Pulmonary Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Function Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oda", 
        "givenName": "Keishi", 
        "id": "sg:person.01146120052.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146120052.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishimoto", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01342450607.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342450607.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yatera", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.01032646234.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646234.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naito", 
        "givenName": "Keisuke", 
        "id": "sg:person.01132447501.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132447501.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ogoshi", 
        "givenName": "Takaaki", 
        "id": "sg:person.01143343732.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143343732.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamasaki", 
        "givenName": "Kei", 
        "id": "sg:person.01347162207.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347162207.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, Steel Memorial Yawata Hospital, 1-1-1, Harunomachi, Yahatahigashiku, 805-8508, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Respiratory Medicine, Steel Memorial Yawata Hospital, 1-1-1, Harunomachi, Yahatahigashiku, 805-8508, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imanaga", 
        "givenName": "Tomotoshi", 
        "id": "sg:person.0715553531.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715553531.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kokuraminamiku, 802-0052, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Medicine, Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kokuraminamiku, 802-0052, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuda", 
        "givenName": "Toru", 
        "id": "sg:person.01221051134.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221051134.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, National Institute of Public Health, Wako, Saitama, Japan, 2-3-6 Minami, 351-0197, Wako-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415776.6", 
          "name": [
            "Department of Epidemiology, National Institute of Public Health, Wako, Saitama, Japan, 2-3-6 Minami, 351-0197, Wako-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakao", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.0732154756.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732154756.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawanami", 
        "givenName": "Toshinori", 
        "id": "sg:person.0623556107.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623556107.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.271052.3", 
          "name": [
            "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukae", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01143125277.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125277.28"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-01-30", 
    "datePublishedReg": "2014-01-30", 
    "description": "BackgroundThe 2011 idiopathic pulmonary fibrosis (IPF) guidelines are based on the diagnosis of IPF using only high-resolution computed tomography (HRCT). However, few studies have thus far reviewed the usefulness of the HRCT scoring system based on the grading scale provided in the guidelines. We retrospectively studied 98 patients with respect to assess the prognostic value of changes in HRCT findings using a new HRCT scoring system based on the grading scale published in the guidelines.MethodsConsecutive patients with IPF who were diagnosed using HRCT alone between January 2008 and January 2012 were evaluated. HRCT examinations and pulmonary function tests were performed at six-month intervals for the first year after diagnosis. The HRCT findings were evaluated using the new HRCT scoring system (HRCT fibrosis score) over time. The findings and survival rates were analyzed using a Kaplan-Meier analysis.ResultsThe HRCT fibrosis scores at six and 12 months after diagnosis were significantly increased compared to those observed at the initial diagnosis (p\u2009<\u20090.001). The patients with an elevated HRCT fibrosis score at six months based on a receiver operating characteristic (ROC) curves analysis had a poor prognosis (log-rank, hazard ratio [HR] 2.435, 95% CI 1.196-4.962; p\u2009=\u20090.0142). Furthermore, among the patients without marked changes in %FVC, those with an elevated score above the cut-off value had a poor prognosis (HR 2.192, 95% CI 1.003-4.791; p\u2009=\u20090.0491).ConclusionsOur data demonstrate that the HRCT scoring system based on the grading scale is useful for predicting the clinical outcomes of IPF and identifying patients with an adverse prognosis when used in combination with spirometry.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1465-9921-15-10", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6130473", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028525", 
        "issn": [
          "1465-9921", 
          "1465-993X"
        ], 
        "name": "Respiratory Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "HRCT scoring system", 
      "HRCT fibrosis score", 
      "scoring system", 
      "HRCT findings", 
      "clinical outcomes", 
      "fibrosis score", 
      "poor prognosis", 
      "pulmonary function tests", 
      "Kaplan-Meier analysis", 
      "idiopathic pulmonary fibrosis", 
      "idiopathic pulmonary fibrosis (IPF) guidelines", 
      "diagnosis of IPF", 
      "six-month intervals", 
      "MethodsConsecutive patients", 
      "HRCT examination", 
      "function tests", 
      "initial diagnosis", 
      "adverse prognosis", 
      "pulmonary fibrosis", 
      "prognostic value", 
      "ConclusionsOur data", 
      "patients", 
      "survival rate", 
      "grading scale", 
      "prognosis", 
      "diagnosis", 
      "IPF", 
      "elevated scores", 
      "scores", 
      "first year", 
      "months", 
      "outcomes", 
      "guidelines", 
      "findings", 
      "spirometry", 
      "HRCT", 
      "FVC", 
      "fibrosis", 
      "tomography", 
      "examination", 
      "changes", 
      "years", 
      "interval", 
      "scale", 
      "study", 
      "rate", 
      "usefulness", 
      "test", 
      "analysis", 
      "combination", 
      "data", 
      "values", 
      "receiver", 
      "time", 
      "system", 
      "characteristics", 
      "respect"
    ], 
    "name": "High-resolution CT scoring system-based grading scale predicts the clinical outcomes in patients with idiopathic pulmonary fibrosis", 
    "pagination": "10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015195178"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1465-9921-15-10"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24479411"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1465-9921-15-10", 
      "https://app.dimensions.ai/details/publication/pub.1015195178"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_639.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1465-9921-15-10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-15-10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-15-10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-15-10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1465-9921-15-10'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      20 PREDICATES      95 URIs      87 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1465-9921-15-10 schema:about N1537409d221c4e6389696bfe0ebe5fdc
2 N22a8582449df4006bc41e90e30d782b3
3 N24863f1df84043b8ad9c4da52f717b55
4 N693a4124bc054b83be2cfa70108e1355
5 N90ad329e49044dd3ada171a005e1900b
6 N919031ec92b045a3a8e240c2ea08b61b
7 N9c51e8ea5c134757a7c62eaf43e0cd4e
8 Na535d19cc897474d8aae493bc344d859
9 Ncc620366218148a2b579f462e352b137
10 Nda6cdf6f613e44ff8393279fd1dccdfa
11 Nddf171e3b10a4cd3b461357eea7fd45d
12 Ne3b7610fa5684fb8bab18c490e6236d9
13 Nf5cac46a8fa74079981480f75d88df9b
14 anzsrc-for:11
15 anzsrc-for:1102
16 schema:author Nf60f2507723741b18c11748489279b95
17 schema:datePublished 2014-01-30
18 schema:datePublishedReg 2014-01-30
19 schema:description BackgroundThe 2011 idiopathic pulmonary fibrosis (IPF) guidelines are based on the diagnosis of IPF using only high-resolution computed tomography (HRCT). However, few studies have thus far reviewed the usefulness of the HRCT scoring system based on the grading scale provided in the guidelines. We retrospectively studied 98 patients with respect to assess the prognostic value of changes in HRCT findings using a new HRCT scoring system based on the grading scale published in the guidelines.MethodsConsecutive patients with IPF who were diagnosed using HRCT alone between January 2008 and January 2012 were evaluated. HRCT examinations and pulmonary function tests were performed at six-month intervals for the first year after diagnosis. The HRCT findings were evaluated using the new HRCT scoring system (HRCT fibrosis score) over time. The findings and survival rates were analyzed using a Kaplan-Meier analysis.ResultsThe HRCT fibrosis scores at six and 12 months after diagnosis were significantly increased compared to those observed at the initial diagnosis (p < 0.001). The patients with an elevated HRCT fibrosis score at six months based on a receiver operating characteristic (ROC) curves analysis had a poor prognosis (log-rank, hazard ratio [HR] 2.435, 95% CI 1.196-4.962; p = 0.0142). Furthermore, among the patients without marked changes in %FVC, those with an elevated score above the cut-off value had a poor prognosis (HR 2.192, 95% CI 1.003-4.791; p = 0.0491).ConclusionsOur data demonstrate that the HRCT scoring system based on the grading scale is useful for predicting the clinical outcomes of IPF and identifying patients with an adverse prognosis when used in combination with spirometry.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N37ab51d0f22540e283f9ddd838f30aa8
23 N513ed2239e2c44c7b4187d6ec808d908
24 sg:journal.1028525
25 schema:keywords ConclusionsOur data
26 FVC
27 HRCT
28 HRCT examination
29 HRCT fibrosis score
30 HRCT findings
31 HRCT scoring system
32 IPF
33 Kaplan-Meier analysis
34 MethodsConsecutive patients
35 adverse prognosis
36 analysis
37 changes
38 characteristics
39 clinical outcomes
40 combination
41 data
42 diagnosis
43 diagnosis of IPF
44 elevated scores
45 examination
46 fibrosis
47 fibrosis score
48 findings
49 first year
50 function tests
51 grading scale
52 guidelines
53 idiopathic pulmonary fibrosis
54 idiopathic pulmonary fibrosis (IPF) guidelines
55 initial diagnosis
56 interval
57 months
58 outcomes
59 patients
60 poor prognosis
61 prognosis
62 prognostic value
63 pulmonary fibrosis
64 pulmonary function tests
65 rate
66 receiver
67 respect
68 scale
69 scores
70 scoring system
71 six-month intervals
72 spirometry
73 study
74 survival rate
75 system
76 test
77 time
78 tomography
79 usefulness
80 values
81 years
82 schema:name High-resolution CT scoring system-based grading scale predicts the clinical outcomes in patients with idiopathic pulmonary fibrosis
83 schema:pagination 10
84 schema:productId N93a952096cd94d9a848abf8f5f315066
85 Na594d11481b440989481ef125666890a
86 Nf73b691513c740f7b0c265c30ff5b3e0
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015195178
88 https://doi.org/10.1186/1465-9921-15-10
89 schema:sdDatePublished 2022-10-01T06:39
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ndb9c1d62c0b04772992302d1e0063afc
92 schema:url https://doi.org/10.1186/1465-9921-15-10
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0e0dfaf8c9534af7ac1fe904343352f4 rdf:first sg:person.01347162207.34
97 rdf:rest Ne096d04bf901428181060c3b8d49584b
98 N1537409d221c4e6389696bfe0ebe5fdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Aged
100 rdf:type schema:DefinedTerm
101 N22a8582449df4006bc41e90e30d782b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Middle Aged
103 rdf:type schema:DefinedTerm
104 N24863f1df84043b8ad9c4da52f717b55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Respiratory Function Tests
106 rdf:type schema:DefinedTerm
107 N37ab51d0f22540e283f9ddd838f30aa8 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N513ed2239e2c44c7b4187d6ec808d908 schema:volumeNumber 15
110 rdf:type schema:PublicationVolume
111 N5289cc4df3ba49b7a99bc965839f2315 rdf:first sg:person.01143343732.14
112 rdf:rest N0e0dfaf8c9534af7ac1fe904343352f4
113 N5bbb0d91d0f84d8ab8d3eea0bd0aff73 rdf:first sg:person.0732154756.52
114 rdf:rest Nc2495cd988d1473cbcb3efdcffa80abf
115 N693a4124bc054b83be2cfa70108e1355 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Predictive Value of Tests
117 rdf:type schema:DefinedTerm
118 N743d49e5bdcc4002a1a14c43e6879c3e rdf:first sg:person.01143125277.28
119 rdf:rest rdf:nil
120 N7ca493a61bc84850aea77c07b3767d09 rdf:first sg:person.01342450607.40
121 rdf:rest Ncede5d923079426dac46da2376dcd80c
122 N82ab1e911a074a668d48749aa5000889 rdf:first sg:person.01132447501.70
123 rdf:rest N5289cc4df3ba49b7a99bc965839f2315
124 N8b3d74f906f645f681f2ac899b6948f9 rdf:first sg:person.01221051134.03
125 rdf:rest N5bbb0d91d0f84d8ab8d3eea0bd0aff73
126 N90ad329e49044dd3ada171a005e1900b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 N919031ec92b045a3a8e240c2ea08b61b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Survival Rate
131 rdf:type schema:DefinedTerm
132 N93a952096cd94d9a848abf8f5f315066 schema:name pubmed_id
133 schema:value 24479411
134 rdf:type schema:PropertyValue
135 N9c51e8ea5c134757a7c62eaf43e0cd4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Idiopathic Pulmonary Fibrosis
137 rdf:type schema:DefinedTerm
138 Na535d19cc897474d8aae493bc344d859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Retrospective Studies
140 rdf:type schema:DefinedTerm
141 Na594d11481b440989481ef125666890a schema:name doi
142 schema:value 10.1186/1465-9921-15-10
143 rdf:type schema:PropertyValue
144 Nc2495cd988d1473cbcb3efdcffa80abf rdf:first sg:person.0623556107.50
145 rdf:rest N743d49e5bdcc4002a1a14c43e6879c3e
146 Ncc620366218148a2b579f462e352b137 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 Ncede5d923079426dac46da2376dcd80c rdf:first sg:person.01032646234.50
150 rdf:rest N82ab1e911a074a668d48749aa5000889
151 Nda6cdf6f613e44ff8393279fd1dccdfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Tomography, X-Ray Computed
153 rdf:type schema:DefinedTerm
154 Ndb9c1d62c0b04772992302d1e0063afc schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 Nddf171e3b10a4cd3b461357eea7fd45d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Male
158 rdf:type schema:DefinedTerm
159 Ne096d04bf901428181060c3b8d49584b rdf:first sg:person.0715553531.87
160 rdf:rest N8b3d74f906f645f681f2ac899b6948f9
161 Ne3b7610fa5684fb8bab18c490e6236d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Severity of Illness Index
163 rdf:type schema:DefinedTerm
164 Nf5cac46a8fa74079981480f75d88df9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Treatment Outcome
166 rdf:type schema:DefinedTerm
167 Nf60f2507723741b18c11748489279b95 rdf:first sg:person.01146120052.08
168 rdf:rest N7ca493a61bc84850aea77c07b3767d09
169 Nf73b691513c740f7b0c265c30ff5b3e0 schema:name dimensions_id
170 schema:value pub.1015195178
171 rdf:type schema:PropertyValue
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
176 schema:name Cardiorespiratory Medicine and Haematology
177 rdf:type schema:DefinedTerm
178 sg:grant.6130473 http://pending.schema.org/fundedItem sg:pub.10.1186/1465-9921-15-10
179 rdf:type schema:MonetaryGrant
180 sg:journal.1028525 schema:issn 1465-9921
181 1465-993X
182 schema:name Respiratory Research
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.01032646234.50 schema:affiliation grid-institutes:grid.271052.3
186 schema:familyName Yatera
187 schema:givenName Kazuhiro
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646234.50
189 rdf:type schema:Person
190 sg:person.01132447501.70 schema:affiliation grid-institutes:grid.271052.3
191 schema:familyName Naito
192 schema:givenName Keisuke
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132447501.70
194 rdf:type schema:Person
195 sg:person.01143125277.28 schema:affiliation grid-institutes:grid.271052.3
196 schema:familyName Mukae
197 schema:givenName Hiroshi
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125277.28
199 rdf:type schema:Person
200 sg:person.01143343732.14 schema:affiliation grid-institutes:grid.271052.3
201 schema:familyName Ogoshi
202 schema:givenName Takaaki
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143343732.14
204 rdf:type schema:Person
205 sg:person.01146120052.08 schema:affiliation grid-institutes:grid.271052.3
206 schema:familyName Oda
207 schema:givenName Keishi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146120052.08
209 rdf:type schema:Person
210 sg:person.01221051134.03 schema:affiliation grid-institutes:None
211 schema:familyName Tsuda
212 schema:givenName Toru
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221051134.03
214 rdf:type schema:Person
215 sg:person.01342450607.40 schema:affiliation grid-institutes:grid.271052.3
216 schema:familyName Ishimoto
217 schema:givenName Hiroshi
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342450607.40
219 rdf:type schema:Person
220 sg:person.01347162207.34 schema:affiliation grid-institutes:grid.271052.3
221 schema:familyName Yamasaki
222 schema:givenName Kei
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347162207.34
224 rdf:type schema:Person
225 sg:person.0623556107.50 schema:affiliation grid-institutes:grid.271052.3
226 schema:familyName Kawanami
227 schema:givenName Toshinori
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623556107.50
229 rdf:type schema:Person
230 sg:person.0715553531.87 schema:affiliation grid-institutes:None
231 schema:familyName Imanaga
232 schema:givenName Tomotoshi
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715553531.87
234 rdf:type schema:Person
235 sg:person.0732154756.52 schema:affiliation grid-institutes:grid.415776.6
236 schema:familyName Nakao
237 schema:givenName Hiroyuki
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732154756.52
239 rdf:type schema:Person
240 grid-institutes:None schema:alternateName Department of Medicine, Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kokuraminamiku, 802-0052, Kitakyushu City, Fukuoka, Japan
241 Department of Respiratory Medicine, Steel Memorial Yawata Hospital, 1-1-1, Harunomachi, Yahatahigashiku, 805-8508, Kitakyushu City, Fukuoka, Japan
242 schema:name Department of Medicine, Kirigaoka Tsuda Hospital, 3-9-20 Kirigaoka, Kokuraminamiku, 802-0052, Kitakyushu City, Fukuoka, Japan
243 Department of Respiratory Medicine, Steel Memorial Yawata Hospital, 1-1-1, Harunomachi, Yahatahigashiku, 805-8508, Kitakyushu City, Fukuoka, Japan
244 rdf:type schema:Organization
245 grid-institutes:grid.271052.3 schema:alternateName Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan
246 schema:name Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, 807-8555, Kitakyushu City, Fukuoka, Japan
247 rdf:type schema:Organization
248 grid-institutes:grid.415776.6 schema:alternateName Department of Epidemiology, National Institute of Public Health, Wako, Saitama, Japan, 2-3-6 Minami, 351-0197, Wako-shi, Saitama, Japan
249 schema:name Department of Epidemiology, National Institute of Public Health, Wako, Saitama, Japan, 2-3-6 Minami, 351-0197, Wako-shi, Saitama, Japan
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...