Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04-20

AUTHORS

Maryline Pioz, Hélène Guis, Didier Calavas, Benoît Durand, David Abrial, Christian Ducrot

ABSTRACT

Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SARerr model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SARerr model, which led to a trend SARerr model. Overall, BT spread from north-eastern to south-western France. The average trend SARerr-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SARerr-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SARerr models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases. More... »

PAGES

60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1297-9716-42-60

DOI

http://dx.doi.org/10.1186/1297-9716-42-60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048686664

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21507221


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0707", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animal Husbandry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bluetongue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bluetongue virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ceratopogonidae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insect Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pioz", 
        "givenName": "Maryline", 
        "id": "sg:person.01260656727.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260656727.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIRAD, UMR Contr\u00f4le des maladies, F-34398, Montpellier, France", 
          "id": "http://www.grid.ac/institutes/grid.8183.2", 
          "name": [
            "CIRAD, UMR Contr\u00f4le des maladies, F-34398, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guis", 
        "givenName": "H\u00e9l\u00e8ne", 
        "id": "sg:person.0635653331.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635653331.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Agency for Food, Environnemental and Occupational Health Safety, Lyon, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "French Agency for Food, Environnemental and Occupational Health Safety, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calavas", 
        "givenName": "Didier", 
        "id": "sg:person.0612726474.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612726474.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Agency for Food, Environnemental and Occupational Health Safety, Maisons-Alfort, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "French Agency for Food, Environnemental and Occupational Health Safety, Maisons-Alfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand", 
        "givenName": "Beno\u00eet", 
        "id": "sg:person.01261157067.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261157067.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abrial", 
        "givenName": "David", 
        "id": "sg:person.01355763213.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355763213.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unit\u00e9 d'Epid\u00e9miologie Animale, St Gen\u00e8s Champanelle, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ducrot", 
        "givenName": "Christian", 
        "id": "sg:person.01132446630.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132446630.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00436-009-1417-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023169531", 
          "https://doi.org/10.1007/s00436-009-1417-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-008-0231-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022914375", 
          "https://doi.org/10.1007/s10344-008-0231-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00436-008-1053-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039744293", 
          "https://doi.org/10.1007/s00436-008-1053-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-005-9018-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025533636", 
          "https://doi.org/10.1007/s11538-005-9018-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1751-0147-51-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009760645", 
          "https://doi.org/10.1186/1751-0147-51-37"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-20", 
    "datePublishedReg": "2011-04-20", 
    "description": "Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SARerr model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SARerr model, which led to a trend SARerr model. Overall, BT spread from north-eastern to south-western France. The average trend SARerr-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SARerr-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SARerr models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1297-9716-42-60", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1015868", 
        "issn": [
          "0928-4249", 
          "1297-9716"
        ], 
        "name": "Veterinary Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "spatial error simultaneous autoregressive model", 
      "simultaneous autoregressive models", 
      "autoregressive model", 
      "spatial transmission characteristics", 
      "diffusion process", 
      "disease diffusion", 
      "velocity", 
      "speed of diffusion", 
      "efficient method", 
      "powerful tool", 
      "model", 
      "spatial autocorrelation", 
      "spatial dynamics", 
      "analysis model", 
      "first step", 
      "only data", 
      "speed", 
      "location of cases", 
      "diffusion", 
      "dynamics", 
      "autocorrelation", 
      "transmission characteristics", 
      "direction", 
      "cases", 
      "major directions", 
      "step", 
      "approach", 
      "tool", 
      "flight", 
      "further insight", 
      "local movements", 
      "information", 
      "time period", 
      "data", 
      "process", 
      "characteristics", 
      "location", 
      "infectious diseases", 
      "insights", 
      "movement", 
      "area", 
      "knowledge", 
      "BTV serotype 8", 
      "south-western France", 
      "TSA", 
      "study", 
      "France", 
      "date", 
      "period", 
      "north-eastern", 
      "active flight", 
      "municipalities", 
      "clinical cases", 
      "days", 
      "bluetongue", 
      "Culicoides", 
      "countries", 
      "farm animals", 
      "disease", 
      "virus", 
      "bluetongue virus", 
      "serotype 8", 
      "animals", 
      "method", 
      "ruminants"
    ], 
    "name": "Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue", 
    "pagination": "60", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048686664"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1297-9716-42-60"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21507221"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1297-9716-42-60", 
      "https://app.dimensions.ai/details/publication/pub.1048686664"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1297-9716-42-60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1297-9716-42-60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1297-9716-42-60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1297-9716-42-60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1297-9716-42-60'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      107 URIs      92 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1297-9716-42-60 schema:about N10b293a5e3c34384879c64d9bd06b756
2 N380a410aaa744b78a92d395907ca681e
3 N628d03ee11324ba786c3081d53f321cd
4 N87b55414218247cd9d12c540327e435e
5 N9cf9ba14238b41679b99653244326348
6 Nad392a84b7434f6f9196ceea7dd21623
7 Nbad0d2191a0f435ea6199ac8308bca44
8 Ncfb00eddb63c4aacb190945596af01cc
9 Nea3148b5ece64bd9ae43849cf07d0e02
10 Nfd8a06b2b93947b7a23a4013b6d899f9
11 anzsrc-for:06
12 anzsrc-for:0605
13 anzsrc-for:07
14 anzsrc-for:0707
15 schema:author N9a03e6cf77e640a897788266a021339d
16 schema:citation sg:pub.10.1007/s00436-008-1053-x
17 sg:pub.10.1007/s00436-009-1417-x
18 sg:pub.10.1007/s10344-008-0231-6
19 sg:pub.10.1007/s11538-005-9018-z
20 sg:pub.10.1186/1751-0147-51-37
21 schema:datePublished 2011-04-20
22 schema:datePublishedReg 2011-04-20
23 schema:description Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SARerr model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SARerr model, which led to a trend SARerr model. Overall, BT spread from north-eastern to south-western France. The average trend SARerr-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SARerr-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SARerr models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf Nd17b25184a434a5eae5d7b7ad45f004b
27 Nd60fdb059c0e47329b7b4cadbe61a70c
28 sg:journal.1015868
29 schema:keywords BTV serotype 8
30 Culicoides
31 France
32 TSA
33 active flight
34 analysis model
35 animals
36 approach
37 area
38 autocorrelation
39 autoregressive model
40 bluetongue
41 bluetongue virus
42 cases
43 characteristics
44 clinical cases
45 countries
46 data
47 date
48 days
49 diffusion
50 diffusion process
51 direction
52 disease
53 disease diffusion
54 dynamics
55 efficient method
56 farm animals
57 first step
58 flight
59 further insight
60 infectious diseases
61 information
62 insights
63 knowledge
64 local movements
65 location
66 location of cases
67 major directions
68 method
69 model
70 movement
71 municipalities
72 north-eastern
73 only data
74 period
75 powerful tool
76 process
77 ruminants
78 serotype 8
79 simultaneous autoregressive models
80 south-western France
81 spatial autocorrelation
82 spatial dynamics
83 spatial error simultaneous autoregressive model
84 spatial transmission characteristics
85 speed
86 speed of diffusion
87 step
88 study
89 time period
90 tool
91 transmission characteristics
92 velocity
93 virus
94 schema:name Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue
95 schema:pagination 60
96 schema:productId N303d66c2dea14b3fab978a5070835e4d
97 N48501ae19d1b4f27a07a74b378e3975c
98 Nbe215b4e4a58484087b194ccabe58389
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048686664
100 https://doi.org/10.1186/1297-9716-42-60
101 schema:sdDatePublished 2022-12-01T06:28
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nb9805fc9ca804227ae904c4784a94ad6
104 schema:url https://doi.org/10.1186/1297-9716-42-60
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N10b293a5e3c34384879c64d9bd06b756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name France
110 rdf:type schema:DefinedTerm
111 N303d66c2dea14b3fab978a5070835e4d schema:name doi
112 schema:value 10.1186/1297-9716-42-60
113 rdf:type schema:PropertyValue
114 N380a410aaa744b78a92d395907ca681e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Bluetongue
116 rdf:type schema:DefinedTerm
117 N44f64b392ade430186243a7cdb6bf786 rdf:first sg:person.01355763213.99
118 rdf:rest N5b66e689acf9482c8ff8537fc528ca23
119 N48501ae19d1b4f27a07a74b378e3975c schema:name dimensions_id
120 schema:value pub.1048686664
121 rdf:type schema:PropertyValue
122 N54cf496da6314403bcdd2ad5d70a1792 rdf:first sg:person.0612726474.66
123 rdf:rest Nc84147eac56a48cb8ec960ffacb658c2
124 N5b66e689acf9482c8ff8537fc528ca23 rdf:first sg:person.01132446630.25
125 rdf:rest rdf:nil
126 N626725cc4e544313a6259ff9eb536212 rdf:first sg:person.0635653331.24
127 rdf:rest N54cf496da6314403bcdd2ad5d70a1792
128 N628d03ee11324ba786c3081d53f321cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Cattle
130 rdf:type schema:DefinedTerm
131 N87b55414218247cd9d12c540327e435e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Animal Husbandry
133 rdf:type schema:DefinedTerm
134 N9a03e6cf77e640a897788266a021339d rdf:first sg:person.01260656727.83
135 rdf:rest N626725cc4e544313a6259ff9eb536212
136 N9cf9ba14238b41679b99653244326348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Animals
138 rdf:type schema:DefinedTerm
139 Nad392a84b7434f6f9196ceea7dd21623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Insect Vectors
141 rdf:type schema:DefinedTerm
142 Nb9805fc9ca804227ae904c4784a94ad6 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nbad0d2191a0f435ea6199ac8308bca44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Ceratopogonidae
146 rdf:type schema:DefinedTerm
147 Nbe215b4e4a58484087b194ccabe58389 schema:name pubmed_id
148 schema:value 21507221
149 rdf:type schema:PropertyValue
150 Nc84147eac56a48cb8ec960ffacb658c2 rdf:first sg:person.01261157067.09
151 rdf:rest N44f64b392ade430186243a7cdb6bf786
152 Ncfb00eddb63c4aacb190945596af01cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Models, Biological
154 rdf:type schema:DefinedTerm
155 Nd17b25184a434a5eae5d7b7ad45f004b schema:volumeNumber 42
156 rdf:type schema:PublicationVolume
157 Nd60fdb059c0e47329b7b4cadbe61a70c schema:issueNumber 1
158 rdf:type schema:PublicationIssue
159 Nea3148b5ece64bd9ae43849cf07d0e02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Bluetongue virus
161 rdf:type schema:DefinedTerm
162 Nfd8a06b2b93947b7a23a4013b6d899f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Cattle Diseases
164 rdf:type schema:DefinedTerm
165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biological Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
169 schema:name Microbiology
170 rdf:type schema:DefinedTerm
171 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
172 schema:name Agricultural and Veterinary Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0707 schema:inDefinedTermSet anzsrc-for:
175 schema:name Veterinary Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1015868 schema:issn 0928-4249
178 1297-9716
179 schema:name Veterinary Research
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.01132446630.25 schema:affiliation grid-institutes:None
183 schema:familyName Ducrot
184 schema:givenName Christian
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132446630.25
186 rdf:type schema:Person
187 sg:person.01260656727.83 schema:affiliation grid-institutes:None
188 schema:familyName Pioz
189 schema:givenName Maryline
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260656727.83
191 rdf:type schema:Person
192 sg:person.01261157067.09 schema:affiliation grid-institutes:None
193 schema:familyName Durand
194 schema:givenName Benoît
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261157067.09
196 rdf:type schema:Person
197 sg:person.01355763213.99 schema:affiliation grid-institutes:None
198 schema:familyName Abrial
199 schema:givenName David
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355763213.99
201 rdf:type schema:Person
202 sg:person.0612726474.66 schema:affiliation grid-institutes:None
203 schema:familyName Calavas
204 schema:givenName Didier
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612726474.66
206 rdf:type schema:Person
207 sg:person.0635653331.24 schema:affiliation grid-institutes:grid.8183.2
208 schema:familyName Guis
209 schema:givenName Hélène
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635653331.24
211 rdf:type schema:Person
212 sg:pub.10.1007/s00436-008-1053-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039744293
213 https://doi.org/10.1007/s00436-008-1053-x
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00436-009-1417-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023169531
216 https://doi.org/10.1007/s00436-009-1417-x
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s10344-008-0231-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022914375
219 https://doi.org/10.1007/s10344-008-0231-6
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s11538-005-9018-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025533636
222 https://doi.org/10.1007/s11538-005-9018-z
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1751-0147-51-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009760645
225 https://doi.org/10.1186/1751-0147-51-37
226 rdf:type schema:CreativeWork
227 grid-institutes:None schema:alternateName French Agency for Food, Environnemental and Occupational Health Safety, Lyon, France
228 French Agency for Food, Environnemental and Occupational Health Safety, Maisons-Alfort, France
229 Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unité d'Epidémiologie Animale, St Genès Champanelle, France
230 schema:name French Agency for Food, Environnemental and Occupational Health Safety, Lyon, France
231 French Agency for Food, Environnemental and Occupational Health Safety, Maisons-Alfort, France
232 Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand Theix, Unité d'Epidémiologie Animale, St Genès Champanelle, France
233 rdf:type schema:Organization
234 grid-institutes:grid.8183.2 schema:alternateName CIRAD, UMR Contrôle des maladies, F-34398, Montpellier, France
235 schema:name CIRAD, UMR Contrôle des maladies, F-34398, Montpellier, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...