Power of QTL detection by either fixed or random models in half-sib designs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Davood Kolbehdari, Gerald B. Jansen, Lawrence R. Schaeffer, Brian O. Allen

ABSTRACT

The aim of this study was to compare the variance component approach for QTL linkage mapping in half-sib designs to the simple regression method. Empirical power was determined by Monte Carlo simulation in granddaughter designs. The factors studied (base values in parentheses) included the number of sires (5) and sons per sire (80), ratio of QTL variance to total genetic variance (lambda= 0.1), marker spacing (10 cM), and QTL allele frequency (0.5). A single bi-allelic QTL and six equally spaced markers with six alleles each were simulated. Empirical power using the regression method was 0.80, 0.92 and 0.98 for 5, 10, and 20 sires, respectively, versus 0.88, 0.98 and 0.99 using the variance component method. Power was 0.74, 0.80, 0.93, and 0.95 using regression versus 0.77, 0.88, 0.94, and 0.97 using the variance component method for QTL variance ratios (lambda) of 0.05, 0.1, 0.2, and 0.3, respectively. Power was 0.79, 0.85, 0.80 and 0.87 using regression versus 0.80, 0.86, 0.88, and 0.85 using the variance component method for QTL allele frequencies of 0.1, 0.3, 0.5, and 0.8, respectively. The log10 of type I error profiles were quite flat at close marker spacing (1 cM), confirming the inability to fine-map QTL by linkage analysis in half-sib designs. The variance component method showed slightly more potential than the regression method in QTL mapping. More... »

PAGES

601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1297-9686-37-7-601

DOI

http://dx.doi.org/10.1186/1297-9686-37-7-601

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051700663

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16277970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Family Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Random Allocation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tehran", 
          "id": "https://www.grid.ac/institutes/grid.46072.37", 
          "name": [
            "Center for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, N1G 2W1, Guelph, Ontario, Canada", 
            "Department of Animal Science, Abureihan Higher Education Complex, University of Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolbehdari", 
        "givenName": "Davood", 
        "id": "sg:person.0715635457.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715635457.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dekoppel Consulting, N1G 2Y8, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jansen", 
        "givenName": "Gerald B.", 
        "id": "sg:person.01045351756.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045351756.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Center for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, N1G 2W1, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaeffer", 
        "givenName": "Lawrence R.", 
        "id": "sg:person.01162144016.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162144016.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Brian O.", 
        "id": "sg:person.01302547517.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302547517.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1297-9686-33-5-453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016291733", 
          "https://doi.org/10.1186/1297-9686-33-5-453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-27-3-251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030015620", 
          "https://doi.org/10.1186/1297-9686-27-3-251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-33-2-153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035367387", 
          "https://doi.org/10.1186/1297-9686-33-2-153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/301844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052637044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(93)77503-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086082434"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "The aim of this study was to compare the variance component approach for QTL linkage mapping in half-sib designs to the simple regression method. Empirical power was determined by Monte Carlo simulation in granddaughter designs. The factors studied (base values in parentheses) included the number of sires (5) and sons per sire (80), ratio of QTL variance to total genetic variance (lambda= 0.1), marker spacing (10 cM), and QTL allele frequency (0.5). A single bi-allelic QTL and six equally spaced markers with six alleles each were simulated. Empirical power using the regression method was 0.80, 0.92 and 0.98 for 5, 10, and 20 sires, respectively, versus 0.88, 0.98 and 0.99 using the variance component method. Power was 0.74, 0.80, 0.93, and 0.95 using regression versus 0.77, 0.88, 0.94, and 0.97 using the variance component method for QTL variance ratios (lambda) of 0.05, 0.1, 0.2, and 0.3, respectively. Power was 0.79, 0.85, 0.80 and 0.87 using regression versus 0.80, 0.86, 0.88, and 0.85 using the variance component method for QTL allele frequencies of 0.1, 0.3, 0.5, and 0.8, respectively. The log10 of type I error profiles were quite flat at close marker spacing (1 cM), confirming the inability to fine-map QTL by linkage analysis in half-sib designs. The variance component method showed slightly more potential than the regression method in QTL mapping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1297-9686-37-7-601", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1014139", 
        "issn": [
          "0999-193X", 
          "1297-9686"
        ], 
        "name": "Genetics Selection Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Power of QTL detection by either fixed or random models in half-sib designs", 
    "pagination": "601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f646aa9f77a096d5633a29cf6bec3ba3dda1cfb17b4b6f7a574d517706d5d733"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16277970"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1297-9686-37-7-601"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051700663"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1297-9686-37-7-601", 
      "https://app.dimensions.ai/details/publication/pub.1051700663"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1297-9686-37-7-601"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1297-9686-37-7-601'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1297-9686-37-7-601'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1297-9686-37-7-601'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1297-9686-37-7-601'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      46 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1297-9686-37-7-601 schema:about N107688c0e3554f439dacf18ef095e730
2 N1b0b00c631c84f4ca1b01113b9cf1dd6
3 N54f400a9f72f41daa3b22266012cbee7
4 N56e700a46ac148ed985e0009d379a254
5 N60f22b29137d4ff1a458007b0c7b47f8
6 N653e2b1c0b4040d4ba1900f37a58e6de
7 N6cc592d6f4444ce586c4c2bc50f7cd7b
8 N90cb329950ca4dfa85bc191fb432e6de
9 N9ef34db70f054bd5b0df8c74133825c4
10 Nde3a48549ca049f1b778d2be2a8fe6d9
11 Neadc80ab3e724d08bf6edf843fef6734
12 Nff35bc6a846e44cf9ff3db0cef071183
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N614da7efbad14f8c936c860237f828f6
16 schema:citation sg:pub.10.1186/1297-9686-27-3-251
17 sg:pub.10.1186/1297-9686-33-2-153
18 sg:pub.10.1186/1297-9686-33-5-453
19 https://doi.org/10.1086/301844
20 https://doi.org/10.3168/jds.s0022-0302(93)77503-7
21 schema:datePublished 2005-12
22 schema:datePublishedReg 2005-12-01
23 schema:description The aim of this study was to compare the variance component approach for QTL linkage mapping in half-sib designs to the simple regression method. Empirical power was determined by Monte Carlo simulation in granddaughter designs. The factors studied (base values in parentheses) included the number of sires (5) and sons per sire (80), ratio of QTL variance to total genetic variance (lambda= 0.1), marker spacing (10 cM), and QTL allele frequency (0.5). A single bi-allelic QTL and six equally spaced markers with six alleles each were simulated. Empirical power using the regression method was 0.80, 0.92 and 0.98 for 5, 10, and 20 sires, respectively, versus 0.88, 0.98 and 0.99 using the variance component method. Power was 0.74, 0.80, 0.93, and 0.95 using regression versus 0.77, 0.88, 0.94, and 0.97 using the variance component method for QTL variance ratios (lambda) of 0.05, 0.1, 0.2, and 0.3, respectively. Power was 0.79, 0.85, 0.80 and 0.87 using regression versus 0.80, 0.86, 0.88, and 0.85 using the variance component method for QTL allele frequencies of 0.1, 0.3, 0.5, and 0.8, respectively. The log10 of type I error profiles were quite flat at close marker spacing (1 cM), confirming the inability to fine-map QTL by linkage analysis in half-sib designs. The variance component method showed slightly more potential than the regression method in QTL mapping.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N6a69382400784a97ad1a0f15e6ed5428
28 N7a5a35c3d51b4114bc317e4ce52d1e53
29 sg:journal.1014139
30 schema:name Power of QTL detection by either fixed or random models in half-sib designs
31 schema:pagination 601
32 schema:productId N06289795fd844b2789579180848268c7
33 N1f7fee739d3348b79b5aa88beaece127
34 N6a78d0f4ae524a358135bd9a043c270c
35 Nddde80ae6f5c44d3a2a27a8fe5ae8354
36 Nf430abc905ff43d38c0fe0e93263b822
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051700663
38 https://doi.org/10.1186/1297-9686-37-7-601
39 schema:sdDatePublished 2019-04-10T15:49
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd77839d16657498595622ff6af1720f1
42 schema:url http://link.springer.com/10.1186/1297-9686-37-7-601
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N06289795fd844b2789579180848268c7 schema:name readcube_id
47 schema:value f646aa9f77a096d5633a29cf6bec3ba3dda1cfb17b4b6f7a574d517706d5d733
48 rdf:type schema:PropertyValue
49 N107688c0e3554f439dacf18ef095e730 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Alleles
51 rdf:type schema:DefinedTerm
52 N1b0b00c631c84f4ca1b01113b9cf1dd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Regression Analysis
54 rdf:type schema:DefinedTerm
55 N1f7fee739d3348b79b5aa88beaece127 schema:name nlm_unique_id
56 schema:value 9114088
57 rdf:type schema:PropertyValue
58 N3c4fd1ebe4cb4ae195330125ccb401e6 rdf:first sg:person.01302547517.22
59 rdf:rest rdf:nil
60 N54f400a9f72f41daa3b22266012cbee7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Research Design
62 rdf:type schema:DefinedTerm
63 N56e700a46ac148ed985e0009d379a254 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Animals
65 rdf:type schema:DefinedTerm
66 N60f22b29137d4ff1a458007b0c7b47f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Family Characteristics
68 rdf:type schema:DefinedTerm
69 N614da7efbad14f8c936c860237f828f6 rdf:first sg:person.0715635457.13
70 rdf:rest N673b66e8bdf14b2fb15d7e51da7acc77
71 N653e2b1c0b4040d4ba1900f37a58e6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Monte Carlo Method
73 rdf:type schema:DefinedTerm
74 N673b66e8bdf14b2fb15d7e51da7acc77 rdf:first sg:person.01045351756.95
75 rdf:rest N73e4ce0bffbb4ee2837c1b9e3ef7aeca
76 N6a69382400784a97ad1a0f15e6ed5428 schema:volumeNumber 37
77 rdf:type schema:PublicationVolume
78 N6a78d0f4ae524a358135bd9a043c270c schema:name dimensions_id
79 schema:value pub.1051700663
80 rdf:type schema:PropertyValue
81 N6cc592d6f4444ce586c4c2bc50f7cd7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Random Allocation
83 rdf:type schema:DefinedTerm
84 N73e4ce0bffbb4ee2837c1b9e3ef7aeca rdf:first sg:person.01162144016.49
85 rdf:rest N3c4fd1ebe4cb4ae195330125ccb401e6
86 N7a5a35c3d51b4114bc317e4ce52d1e53 schema:issueNumber 7
87 rdf:type schema:PublicationIssue
88 N90cb329950ca4dfa85bc191fb432e6de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Genetic Markers
90 rdf:type schema:DefinedTerm
91 N9652ca6eb1df4fec9ffecfe15abe5c4e schema:name Dekoppel Consulting, N1G 2Y8, Guelph, Ontario, Canada
92 rdf:type schema:Organization
93 N9ef34db70f054bd5b0df8c74133825c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genotype
95 rdf:type schema:DefinedTerm
96 Nd77839d16657498595622ff6af1720f1 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nddde80ae6f5c44d3a2a27a8fe5ae8354 schema:name pubmed_id
99 schema:value 16277970
100 rdf:type schema:PropertyValue
101 Nde3a48549ca049f1b778d2be2a8fe6d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Quantitative Trait Loci
103 rdf:type schema:DefinedTerm
104 Neadc80ab3e724d08bf6edf843fef6734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Genetic
106 rdf:type schema:DefinedTerm
107 Nf430abc905ff43d38c0fe0e93263b822 schema:name doi
108 schema:value 10.1186/1297-9686-37-7-601
109 rdf:type schema:PropertyValue
110 Nff35bc6a846e44cf9ff3db0cef071183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Gene Frequency
112 rdf:type schema:DefinedTerm
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:journal.1014139 schema:issn 0999-193X
120 1297-9686
121 schema:name Genetics Selection Evolution
122 rdf:type schema:Periodical
123 sg:person.01045351756.95 schema:affiliation N9652ca6eb1df4fec9ffecfe15abe5c4e
124 schema:familyName Jansen
125 schema:givenName Gerald B.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045351756.95
127 rdf:type schema:Person
128 sg:person.01162144016.49 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
129 schema:familyName Schaeffer
130 schema:givenName Lawrence R.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162144016.49
132 rdf:type schema:Person
133 sg:person.01302547517.22 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
134 schema:familyName Allen
135 schema:givenName Brian O.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302547517.22
137 rdf:type schema:Person
138 sg:person.0715635457.13 schema:affiliation https://www.grid.ac/institutes/grid.46072.37
139 schema:familyName Kolbehdari
140 schema:givenName Davood
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715635457.13
142 rdf:type schema:Person
143 sg:pub.10.1186/1297-9686-27-3-251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030015620
144 https://doi.org/10.1186/1297-9686-27-3-251
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1297-9686-33-2-153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035367387
147 https://doi.org/10.1186/1297-9686-33-2-153
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1297-9686-33-5-453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016291733
150 https://doi.org/10.1186/1297-9686-33-5-453
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1086/301844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052637044
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3168/jds.s0022-0302(93)77503-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086082434
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
157 schema:name Center for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
158 Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.46072.37 schema:alternateName University of Tehran
161 schema:name Center for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
162 Department of Animal Science, Abureihan Higher Education Complex, University of Tehran, Iran
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...