A Probabilistic Model for Face Transformation with Application to Person Identification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04-21

AUTHORS

Florent Perronnin, Jean-Luc Dugelay, Kenneth Rose

ABSTRACT

A novel approach for content-based image retrieval and its specialization to face recognition are described. While most face recognition techniques aim at modeling faces, our goal is to model the transformation between face images of the same person. As a global face transformation may be too complex to be modeled directly, it is approximated by a collection of local transformations with a constraint that imposes consistency between neighboring transformations. Local transformations and neighborhood constraints are embedded within a probabilistic framework using two-dimensional hidden Markov models (2D HMMs). We further introduce a new efficient technique, called turbo-HMM (T-HMM) for approximating intractable 2D HMMs. Experimental results on a face identification task show that our novel approach compares favorably to the popular eigenfaces and fisherfaces algorithms. More... »

PAGES

821283

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/s1110865704308012

DOI

http://dx.doi.org/10.1155/s1110865704308012

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1063207865


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Multimedia Communications Department, Institut Eur\u00e9com, BP 193, 06904, Sophia Antipolis Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Multimedia Communications Department, Institut Eur\u00e9com, BP 193, 06904, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perronnin", 
        "givenName": "Florent", 
        "id": "sg:person.01320142425.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320142425.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Multimedia Communications Department, Institut Eur\u00e9com, BP 193, 06904, Sophia Antipolis Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Multimedia Communications Department, Institut Eur\u00e9com, BP 193, 06904, Sophia Antipolis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of California, 93106-9560, Santa Barbara, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of California, 93106-9560, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rose", 
        "givenName": "Kenneth", 
        "id": "sg:person.011715666322.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715666322.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-04-21", 
    "datePublishedReg": "2004-04-21", 
    "description": "A novel approach for content-based image retrieval and its specialization to face recognition are described. While most face recognition techniques aim at modeling faces, our goal is to model the transformation between face images of the same person. As a global face transformation may be too complex to be modeled directly, it is approximated by a collection of local transformations with a constraint that imposes consistency between neighboring transformations. Local transformations and neighborhood constraints are embedded within a probabilistic framework using two-dimensional hidden Markov models (2D HMMs). We further introduce a new efficient technique, called turbo-HMM (T-HMM) for approximating intractable 2D HMMs. Experimental results on a face identification task show that our novel approach compares favorably to the popular eigenfaces and fisherfaces algorithms.", 
    "genre": "article", 
    "id": "sg:pub.10.1155/s1110865704308012", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1371279", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "EURASIP Journal on Advances in Signal Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2004"
      }
    ], 
    "keywords": [
      "content-based image retrieval", 
      "face recognition techniques", 
      "novel approach", 
      "image retrieval", 
      "Fisherface algorithm", 
      "face transformation", 
      "person identification", 
      "recognition techniques", 
      "face images", 
      "neighborhood constraints", 
      "modeling faces", 
      "probabilistic framework", 
      "new efficient technique", 
      "task show", 
      "probabilistic model", 
      "Markov model", 
      "efficient technique", 
      "local transformations", 
      "same person", 
      "experimental results", 
      "eigenfaces", 
      "constraints", 
      "retrieval", 
      "algorithm", 
      "HMM", 
      "images", 
      "technique", 
      "framework", 
      "recognition", 
      "model", 
      "applications", 
      "collection", 
      "goal", 
      "transformation", 
      "consistency", 
      "show", 
      "face", 
      "identification", 
      "results", 
      "persons", 
      "specialization", 
      "approach"
    ], 
    "name": "A Probabilistic Model for Face Transformation with Application to Person Identification", 
    "pagination": "821283", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1063207865"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/s1110865704308012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/s1110865704308012", 
      "https://app.dimensions.ai/details/publication/pub.1063207865"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_388.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1155/s1110865704308012"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/s1110865704308012'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/s1110865704308012'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/s1110865704308012'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/s1110865704308012'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      67 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/s1110865704308012 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne3194f0e4fd2426fb735d78e7e8d1701
4 schema:datePublished 2004-04-21
5 schema:datePublishedReg 2004-04-21
6 schema:description A novel approach for content-based image retrieval and its specialization to face recognition are described. While most face recognition techniques aim at modeling faces, our goal is to model the transformation between face images of the same person. As a global face transformation may be too complex to be modeled directly, it is approximated by a collection of local transformations with a constraint that imposes consistency between neighboring transformations. Local transformations and neighborhood constraints are embedded within a probabilistic framework using two-dimensional hidden Markov models (2D HMMs). We further introduce a new efficient technique, called turbo-HMM (T-HMM) for approximating intractable 2D HMMs. Experimental results on a face identification task show that our novel approach compares favorably to the popular eigenfaces and fisherfaces algorithms.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N5d45d5f2a77144a99c3301d8f080aea4
11 Nb2f870f3113f4e00a1f36ceed987adef
12 sg:journal.1371279
13 schema:keywords Fisherface algorithm
14 HMM
15 Markov model
16 algorithm
17 applications
18 approach
19 collection
20 consistency
21 constraints
22 content-based image retrieval
23 efficient technique
24 eigenfaces
25 experimental results
26 face
27 face images
28 face recognition techniques
29 face transformation
30 framework
31 goal
32 identification
33 image retrieval
34 images
35 local transformations
36 model
37 modeling faces
38 neighborhood constraints
39 new efficient technique
40 novel approach
41 person identification
42 persons
43 probabilistic framework
44 probabilistic model
45 recognition
46 recognition techniques
47 results
48 retrieval
49 same person
50 show
51 specialization
52 task show
53 technique
54 transformation
55 schema:name A Probabilistic Model for Face Transformation with Application to Person Identification
56 schema:pagination 821283
57 schema:productId N8af1cbec51344363a8c91816b8ef6048
58 Nc88fbffceecd4d9fa4276ddec717c515
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063207865
60 https://doi.org/10.1155/s1110865704308012
61 schema:sdDatePublished 2022-05-20T07:22
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nb234685004f1464eb32886f48745cbb3
64 schema:url https://doi.org/10.1155/s1110865704308012
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N4fc527d663694f1192da6405eaea0b0e rdf:first sg:person.015053427343.37
69 rdf:rest Nca0d6c50c0fd44da9880428b2ae802ed
70 N5d45d5f2a77144a99c3301d8f080aea4 schema:volumeNumber 2004
71 rdf:type schema:PublicationVolume
72 N8af1cbec51344363a8c91816b8ef6048 schema:name dimensions_id
73 schema:value pub.1063207865
74 rdf:type schema:PropertyValue
75 Nb234685004f1464eb32886f48745cbb3 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nb2f870f3113f4e00a1f36ceed987adef schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 Nc88fbffceecd4d9fa4276ddec717c515 schema:name doi
80 schema:value 10.1155/s1110865704308012
81 rdf:type schema:PropertyValue
82 Nca0d6c50c0fd44da9880428b2ae802ed rdf:first sg:person.011715666322.11
83 rdf:rest rdf:nil
84 Ne3194f0e4fd2426fb735d78e7e8d1701 rdf:first sg:person.01320142425.13
85 rdf:rest N4fc527d663694f1192da6405eaea0b0e
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1371279 schema:issn 1687-0433
93 1687-6172
94 schema:name EURASIP Journal on Advances in Signal Processing
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.011715666322.11 schema:affiliation grid-institutes:grid.133342.4
98 schema:familyName Rose
99 schema:givenName Kenneth
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715666322.11
101 rdf:type schema:Person
102 sg:person.01320142425.13 schema:affiliation grid-institutes:grid.28848.3e
103 schema:familyName Perronnin
104 schema:givenName Florent
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320142425.13
106 rdf:type schema:Person
107 sg:person.015053427343.37 schema:affiliation grid-institutes:grid.28848.3e
108 schema:familyName Dugelay
109 schema:givenName Jean-Luc
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
111 rdf:type schema:Person
112 grid-institutes:grid.133342.4 schema:alternateName Department of Electrical and Computer Engineering, University of California, 93106-9560, Santa Barbara, CA, USA
113 schema:name Department of Electrical and Computer Engineering, University of California, 93106-9560, Santa Barbara, CA, USA
114 rdf:type schema:Organization
115 grid-institutes:grid.28848.3e schema:alternateName Multimedia Communications Department, Institut Eurécom, BP 193, 06904, Sophia Antipolis Cedex, France
116 schema:name Multimedia Communications Department, Institut Eurécom, BP 193, 06904, Sophia Antipolis Cedex, France
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...