Automatic Indexing for Content Analysis of Whale Recordings and XML Representation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Frédéric Bénard, Hervé Glotin

ABSTRACT

This paper focuses on the robust indexing of sperm whale hydrophone recordings based on a set of features extracted from a real-time passive underwater acoustic tracking algorithm for multiple whales using four hydrophones. Acoustic localization permits the study of whale behavior in deep water without interfering with the environment. Given the position coordinates, we are able to generate different features such as the speed, energy of the clicks, Inter-Click-Interval (ICI), and so on. These features allow to construct different markers which allow us to index and structure the audio files. Thus, the behavior study is facilitated by choosing and accessing the corresponding index in the audio file. The complete indexing algorithm is processed on real data from the NUWC (Naval Undersea Warfare Center of the US Navy) and the AUTEC (Atlantic Undersea Test & Evaluation Center-Bahamas). Our model is validated by similar results from the US Navy (NUWC) and SOEST (School of Ocean and Earth Science and Technology) Hawaii university labs in a single whale case. Finally, as an illustration, we index a single whale sound file using the extracted whale's features provided by the tracking, and we present an example of an XML script structuring it. More... »

PAGES

695017

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2010/695017

DOI

http://dx.doi.org/10.1155/2010/695017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003758146


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "Laboratoire des Sciences de l'information et des Syst\u00e9mes (LSIS-UMR CNRS 6168), Universit\u00e9 du Sud Toulon Var, BP 20132, 83957, La Garde Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9nard", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.016213544431.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213544431.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "Laboratoire des Sciences de l'information et des Syst\u00e9mes (LSIS-UMR CNRS 6168), Universit\u00e9 du Sud Toulon Var, BP 20132, 83957, La Garde Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotin", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.016622300103.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apacoust.2006.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023155247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2006.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026285738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2006.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035251522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2006.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044379832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2006.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052336374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2033567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062309190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2184987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062311414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "This paper focuses on the robust indexing of sperm whale hydrophone recordings based on a set of features extracted from a real-time passive underwater acoustic tracking algorithm for multiple whales using four hydrophones. Acoustic localization permits the study of whale behavior in deep water without interfering with the environment. Given the position coordinates, we are able to generate different features such as the speed, energy of the clicks, Inter-Click-Interval (ICI), and so on. These features allow to construct different markers which allow us to index and structure the audio files. Thus, the behavior study is facilitated by choosing and accessing the corresponding index in the audio file. The complete indexing algorithm is processed on real data from the NUWC (Naval Undersea Warfare Center of the US Navy) and the AUTEC (Atlantic Undersea Test & Evaluation Center-Bahamas). Our model is validated by similar results from the US Navy (NUWC) and SOEST (School of Ocean and Earth Science and Technology) Hawaii university labs in a single whale case. Finally, as an illustration, we index a single whale sound file using the extracted whale's features provided by the tracking, and we present an example of an XML script structuring it.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1155/2010/695017", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Automatic Indexing for Content Analysis of Whale Recordings and XML Representation", 
    "pagination": "695017", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11e70a072f238cc9d85ff81c854938b59fa239525431af279783c20000639219"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2010/695017"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003758146"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2010/695017", 
      "https://app.dimensions.ai/details/publication/pub.1003758146"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1155/2010/695017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2010/695017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2010/695017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2010/695017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2010/695017'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2010/695017 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5e23cb20b55c48d7b7d79ffe2ba51ae4
4 schema:citation https://doi.org/10.1016/j.apacoust.2006.05.002
5 https://doi.org/10.1016/j.apacoust.2006.05.003
6 https://doi.org/10.1016/j.apacoust.2006.05.005
7 https://doi.org/10.1016/j.apacoust.2006.05.007
8 https://doi.org/10.1016/j.apacoust.2006.05.014
9 https://doi.org/10.1121/1.2033567
10 https://doi.org/10.1121/1.2184987
11 schema:datePublished 2010-12
12 schema:datePublishedReg 2010-12-01
13 schema:description This paper focuses on the robust indexing of sperm whale hydrophone recordings based on a set of features extracted from a real-time passive underwater acoustic tracking algorithm for multiple whales using four hydrophones. Acoustic localization permits the study of whale behavior in deep water without interfering with the environment. Given the position coordinates, we are able to generate different features such as the speed, energy of the clicks, Inter-Click-Interval (ICI), and so on. These features allow to construct different markers which allow us to index and structure the audio files. Thus, the behavior study is facilitated by choosing and accessing the corresponding index in the audio file. The complete indexing algorithm is processed on real data from the NUWC (Naval Undersea Warfare Center of the US Navy) and the AUTEC (Atlantic Undersea Test & Evaluation Center-Bahamas). Our model is validated by similar results from the US Navy (NUWC) and SOEST (School of Ocean and Earth Science and Technology) Hawaii university labs in a single whale case. Finally, as an illustration, we index a single whale sound file using the extracted whale's features provided by the tracking, and we present an example of an XML script structuring it.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N759c95fb207e40e7b80799f52bae281b
18 Nabcb66c0650e43308b7f2bbc8ea04f37
19 sg:journal.1357355
20 schema:name Automatic Indexing for Content Analysis of Whale Recordings and XML Representation
21 schema:pagination 695017
22 schema:productId N16508982ba7a41f3bbd4d0717011a1f8
23 N56a59cd1915c434ab93301feb23950b3
24 Ne5798f7bc3cd45f8b7d8e723b6af4e96
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003758146
26 https://doi.org/10.1155/2010/695017
27 schema:sdDatePublished 2019-04-11T01:01
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N47bd459972fe4d7f9d485f25bf4f415d
30 schema:url http://link.springer.com/10.1155/2010/695017
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N16508982ba7a41f3bbd4d0717011a1f8 schema:name dimensions_id
35 schema:value pub.1003758146
36 rdf:type schema:PropertyValue
37 N47bd459972fe4d7f9d485f25bf4f415d schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N56a59cd1915c434ab93301feb23950b3 schema:name readcube_id
40 schema:value 11e70a072f238cc9d85ff81c854938b59fa239525431af279783c20000639219
41 rdf:type schema:PropertyValue
42 N5e23cb20b55c48d7b7d79ffe2ba51ae4 rdf:first sg:person.016213544431.34
43 rdf:rest Na35d1ae20d88450296e6da63c8585012
44 N759c95fb207e40e7b80799f52bae281b schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 Na35d1ae20d88450296e6da63c8585012 rdf:first sg:person.016622300103.82
47 rdf:rest rdf:nil
48 Nabcb66c0650e43308b7f2bbc8ea04f37 schema:volumeNumber 2010
49 rdf:type schema:PublicationVolume
50 Ne5798f7bc3cd45f8b7d8e723b6af4e96 schema:name doi
51 schema:value 10.1155/2010/695017
52 rdf:type schema:PropertyValue
53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
54 schema:name Information and Computing Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
57 schema:name Artificial Intelligence and Image Processing
58 rdf:type schema:DefinedTerm
59 sg:journal.1357355 schema:issn 1687-0433
60 1687-6172
61 schema:name Applied Signal Processing
62 rdf:type schema:Periodical
63 sg:person.016213544431.34 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
64 schema:familyName Bénard
65 schema:givenName Frédéric
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213544431.34
67 rdf:type schema:Person
68 sg:person.016622300103.82 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
69 schema:familyName Glotin
70 schema:givenName Hervé
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
72 rdf:type schema:Person
73 https://doi.org/10.1016/j.apacoust.2006.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023155247
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.apacoust.2006.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044379832
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.apacoust.2006.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035251522
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.apacoust.2006.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026285738
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.apacoust.2006.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052336374
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1121/1.2033567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062309190
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1121/1.2184987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062311414
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.462878.7 schema:alternateName Laboratoire des Sciences de l'Information et des Systèmes
88 schema:name Laboratoire des Sciences de l'information et des Systémes (LSIS-UMR CNRS 6168), Université du Sud Toulon Var, BP 20132, 83957, La Garde Cedex, France
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...