A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

V. Jayaraj, D. Ebenezer

ABSTRACT

A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated. More... »

PAGES

690218

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2010/690218

DOI

http://dx.doi.org/10.1155/2010/690218

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024924881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayaraj", 
        "givenName": "V.", 
        "id": "sg:person.010570645467.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570645467.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebenezer", 
        "givenName": "D.", 
        "id": "sg:person.014634147025.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634147025.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/358198.358222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038074170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045247108", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247108", 
          "https://doi.org/10.1007/978-1-4757-6017-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247108", 
          "https://doi.org/10.1007/978-1-4757-6017-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.80823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061230890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.824671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.969512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/82.749102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061238438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.370679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.503916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.806630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.902289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2002.805310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1981.1163708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1982.1163951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.864179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.871129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1155/2010/690218", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images", 
    "pagination": "690218", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76be019e997d2bfa7ca435b749e82a3fdf48acea649d6742851f26f090a66e91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2010/690218"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024924881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2010/690218", 
      "https://app.dimensions.ai/details/publication/pub.1024924881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1155/2010/690218"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2010/690218 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N66d4f7415751455caae999acf787323b
4 schema:citation sg:pub.10.1007/978-1-4757-6017-0
5 https://app.dimensions.ai/details/publication/pub.1045247108
6 https://doi.org/10.1109/78.80823
7 https://doi.org/10.1109/78.824671
8 https://doi.org/10.1109/78.969512
9 https://doi.org/10.1109/82.749102
10 https://doi.org/10.1109/83.370679
11 https://doi.org/10.1109/83.503916
12 https://doi.org/10.1109/83.806630
13 https://doi.org/10.1109/83.902289
14 https://doi.org/10.1109/lsp.2002.805310
15 https://doi.org/10.1109/lsp.2006.884014
16 https://doi.org/10.1109/lsp.2006.884018
17 https://doi.org/10.1109/tassp.1981.1163708
18 https://doi.org/10.1109/tassp.1982.1163951
19 https://doi.org/10.1109/tip.2003.819861
20 https://doi.org/10.1109/tip.2005.852196
21 https://doi.org/10.1109/tip.2005.864179
22 https://doi.org/10.1109/tip.2005.871129
23 https://doi.org/10.1145/358198.358222
24 schema:datePublished 2010-12
25 schema:datePublishedReg 2010-12-01
26 schema:description A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N8a8030698f2d415a9f8f36e937dd3519
31 Nd820b4ed322e46059aef272bff6b4501
32 sg:journal.1357355
33 schema:name A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images
34 schema:pagination 690218
35 schema:productId N17b7cec3140f4642a691ffb4f9c0754b
36 N61ed4b4513b443de806ea8eb4ef8b858
37 Nd4b25af3eeb2416c818d18c525c5ba99
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924881
39 https://doi.org/10.1155/2010/690218
40 schema:sdDatePublished 2019-04-10T18:19
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nb224a69264f542d8918cb02c4d6b7af9
43 schema:url http://link.springer.com/10.1155/2010/690218
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N17b7cec3140f4642a691ffb4f9c0754b schema:name doi
48 schema:value 10.1155/2010/690218
49 rdf:type schema:PropertyValue
50 N61ed4b4513b443de806ea8eb4ef8b858 schema:name dimensions_id
51 schema:value pub.1024924881
52 rdf:type schema:PropertyValue
53 N66d4f7415751455caae999acf787323b rdf:first sg:person.010570645467.34
54 rdf:rest Nc51a6b42d209464a85ed052f2b4c2eca
55 N8a8030698f2d415a9f8f36e937dd3519 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 Nb224a69264f542d8918cb02c4d6b7af9 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nc51a6b42d209464a85ed052f2b4c2eca rdf:first sg:person.014634147025.38
60 rdf:rest rdf:nil
61 Nd4b25af3eeb2416c818d18c525c5ba99 schema:name readcube_id
62 schema:value 76be019e997d2bfa7ca435b749e82a3fdf48acea649d6742851f26f090a66e91
63 rdf:type schema:PropertyValue
64 Nd820b4ed322e46059aef272bff6b4501 schema:volumeNumber 2010
65 rdf:type schema:PublicationVolume
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1357355 schema:issn 1687-0433
73 1687-6172
74 schema:name Applied Signal Processing
75 rdf:type schema:Periodical
76 sg:person.010570645467.34 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
77 schema:familyName Jayaraj
78 schema:givenName V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570645467.34
80 rdf:type schema:Person
81 sg:person.014634147025.38 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
82 schema:familyName Ebenezer
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634147025.38
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-6017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247108
87 https://doi.org/10.1007/978-1-4757-6017-0
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1045247108 schema:CreativeWork
90 https://doi.org/10.1109/78.80823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230890
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/78.824671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231108
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/78.969512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231765
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/82.749102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238438
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/83.370679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239220
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/83.503916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239458
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/83.806630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240032
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/83.902289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240265
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/lsp.2002.805310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376074
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/lsp.2006.884014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376871
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/lsp.2006.884018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376872
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tassp.1981.1163708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518964
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tassp.1982.1163951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519077
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tip.2005.852196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641198
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tip.2005.864179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641380
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tip.2005.871129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641389
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/358198.358222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038074170
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
127 schema:name Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...