A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

V. Jayaraj, D. Ebenezer

ABSTRACT

A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated. More... »

PAGES

690218

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2010/690218

DOI

http://dx.doi.org/10.1155/2010/690218

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024924881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayaraj", 
        "givenName": "V.", 
        "id": "sg:person.010570645467.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570645467.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebenezer", 
        "givenName": "D.", 
        "id": "sg:person.014634147025.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634147025.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/358198.358222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038074170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045247108", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247108", 
          "https://doi.org/10.1007/978-1-4757-6017-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247108", 
          "https://doi.org/10.1007/978-1-4757-6017-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.80823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061230890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.824671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.969512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/82.749102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061238438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.370679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.503916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.806630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.902289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2002.805310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2006.884018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1981.1163708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1982.1163951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.864179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.871129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641389"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1155/2010/690218", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images", 
    "pagination": "690218", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76be019e997d2bfa7ca435b749e82a3fdf48acea649d6742851f26f090a66e91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2010/690218"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024924881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2010/690218", 
      "https://app.dimensions.ai/details/publication/pub.1024924881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1155/2010/690218"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2010/690218'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2010/690218 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N21193500e4a14567accf1eb25483ed0f
4 schema:citation sg:pub.10.1007/978-1-4757-6017-0
5 https://app.dimensions.ai/details/publication/pub.1045247108
6 https://doi.org/10.1109/78.80823
7 https://doi.org/10.1109/78.824671
8 https://doi.org/10.1109/78.969512
9 https://doi.org/10.1109/82.749102
10 https://doi.org/10.1109/83.370679
11 https://doi.org/10.1109/83.503916
12 https://doi.org/10.1109/83.806630
13 https://doi.org/10.1109/83.902289
14 https://doi.org/10.1109/lsp.2002.805310
15 https://doi.org/10.1109/lsp.2006.884014
16 https://doi.org/10.1109/lsp.2006.884018
17 https://doi.org/10.1109/tassp.1981.1163708
18 https://doi.org/10.1109/tassp.1982.1163951
19 https://doi.org/10.1109/tip.2003.819861
20 https://doi.org/10.1109/tip.2005.852196
21 https://doi.org/10.1109/tip.2005.864179
22 https://doi.org/10.1109/tip.2005.871129
23 https://doi.org/10.1145/358198.358222
24 schema:datePublished 2010-12
25 schema:datePublishedReg 2010-12-01
26 schema:description A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N04167a8d3df74d448e8e1e1c3d9e1091
31 Ncde69bc6e7b94fc2ba2f2f990a4fcbe1
32 sg:journal.1357355
33 schema:name A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images
34 schema:pagination 690218
35 schema:productId N178fc5a7b1db426083880c23a687b7bb
36 Nbafbc607fbf24a888e6741d9d9990ebe
37 Nca74d275b4a8487b97320691238e16c5
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924881
39 https://doi.org/10.1155/2010/690218
40 schema:sdDatePublished 2019-04-10T18:19
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Na3b4354f0f444789838c9dae3feddc95
43 schema:url http://link.springer.com/10.1155/2010/690218
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N04167a8d3df74d448e8e1e1c3d9e1091 schema:volumeNumber 2010
48 rdf:type schema:PublicationVolume
49 N178fc5a7b1db426083880c23a687b7bb schema:name doi
50 schema:value 10.1155/2010/690218
51 rdf:type schema:PropertyValue
52 N21193500e4a14567accf1eb25483ed0f rdf:first sg:person.010570645467.34
53 rdf:rest Nc321cea8eba24e748ebf3d3657184f87
54 Na3b4354f0f444789838c9dae3feddc95 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nbafbc607fbf24a888e6741d9d9990ebe schema:name readcube_id
57 schema:value 76be019e997d2bfa7ca435b749e82a3fdf48acea649d6742851f26f090a66e91
58 rdf:type schema:PropertyValue
59 Nc321cea8eba24e748ebf3d3657184f87 rdf:first sg:person.014634147025.38
60 rdf:rest rdf:nil
61 Nca74d275b4a8487b97320691238e16c5 schema:name dimensions_id
62 schema:value pub.1024924881
63 rdf:type schema:PropertyValue
64 Ncde69bc6e7b94fc2ba2f2f990a4fcbe1 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1357355 schema:issn 1687-0433
73 1687-6172
74 schema:name Applied Signal Processing
75 rdf:type schema:Periodical
76 sg:person.010570645467.34 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
77 schema:familyName Jayaraj
78 schema:givenName V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570645467.34
80 rdf:type schema:Person
81 sg:person.014634147025.38 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
82 schema:familyName Ebenezer
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634147025.38
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-6017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247108
87 https://doi.org/10.1007/978-1-4757-6017-0
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1045247108 schema:CreativeWork
90 https://doi.org/10.1109/78.80823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230890
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/78.824671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231108
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/78.969512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231765
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/82.749102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238438
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/83.370679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239220
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/83.503916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239458
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/83.806630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240032
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/83.902289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240265
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/lsp.2002.805310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376074
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/lsp.2006.884014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376871
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/lsp.2006.884018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376872
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tassp.1981.1163708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518964
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tassp.1982.1163951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519077
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tip.2005.852196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641198
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tip.2005.864179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641380
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tip.2005.871129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641389
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/358198.358222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038074170
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
127 schema:name Digital Signal Processing Laboratory, Sri Krishna College of Engineering and Technology, Coimbatore, Anna University Coimbatore, 641008, Tamilnadu, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...