Nonblind and Quasiblind Natural Preserve Transform Watermarking View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

G Fahmy, MF Fahmy, US Mohammed

ABSTRACT

This paper describes a new image watermarking technique based on the Natural Preserving Transform (NPT). The proposed watermarking scheme uses NPT to encode a gray scale watermarking logo image or text, into a host image at any location. NPT brings a unique feature which is uniformly distributing the logo across the host image in an imperceptible manner. The contribution of this paper lies is presenting two efficient nonblind and quasiblind watermark extraction techniques. In the quasiblind case, the extraction algorithm requires little information about the original image that is already conveyed by the watermarked image. Moreover, the proposed scheme does not introduce visual quality degradation into the host image while still being able to extract a logo with a relatively large amount of data. The performance and robustness of the proposed technique are tested by applying common image-processing operations such as cropping, noise degradation, and compression. A quantitative measure is proposed to objectify performance; under this measure, the proposed technique outperforms most of the recent techniques in most cases. We also implemented the proposed technique on a hardware platform, digital signal processor (DSK 6713). Results are illustrated to show the effectiveness of the proposed technique, in different noisy environments. More... »

PAGES

452548

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2010/452548

DOI

http://dx.doi.org/10.1155/2010/452548

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002792401


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German University in Cairo", 
          "id": "https://www.grid.ac/institutes/grid.187323.c", 
          "name": [
            "German University in Cairo (GUC), 11835, New Cairo City, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahmy", 
        "givenName": "G", 
        "id": "sg:person.010027671351.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027671351.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Assiut University", 
          "id": "https://www.grid.ac/institutes/grid.252487.e", 
          "name": [
            "Department of Electrical Engineering, Assiut University, 71515, Assiut, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahmy", 
        "givenName": "MF", 
        "id": "sg:person.012376013410.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376013410.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Assiut University", 
          "id": "https://www.grid.ac/institutes/grid.252487.e", 
          "name": [
            "Department of Electrical Engineering, Assiut University, 71515, Assiut, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammed", 
        "givenName": "US", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0165-1684(98)00017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032958566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2005.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035892880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2005.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035892880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2004.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038056901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.384968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049479598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74827-4_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050526517", 
          "https://doi.org/10.1007/978-3-540-74827-4_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74827-4_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050526517", 
          "https://doi.org/10.1007/978-3-540-74827-4_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/30.793411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061152077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.954550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/6046.890056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061198504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/76.499834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061222004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/76.905982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061222494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/82.718818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061238379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.650120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.799882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.817598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.913599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1985.1164647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2003.815948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061574458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4218/etrij.02.0202.0502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072377855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccece.2002.1013058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093613546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isspit.2008.4775687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093776851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4379297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093913792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2002.1040097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094933853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isspa.1999.818172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095192060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "This paper describes a new image watermarking technique based on the Natural Preserving Transform (NPT). The proposed watermarking scheme uses NPT to encode a gray scale watermarking logo image or text, into a host image at any location. NPT brings a unique feature which is uniformly distributing the logo across the host image in an imperceptible manner. The contribution of this paper lies is presenting two efficient nonblind and quasiblind watermark extraction techniques. In the quasiblind case, the extraction algorithm requires little information about the original image that is already conveyed by the watermarked image. Moreover, the proposed scheme does not introduce visual quality degradation into the host image while still being able to extract a logo with a relatively large amount of data. The performance and robustness of the proposed technique are tested by applying common image-processing operations such as cropping, noise degradation, and compression. A quantitative measure is proposed to objectify performance; under this measure, the proposed technique outperforms most of the recent techniques in most cases. We also implemented the proposed technique on a hardware platform, digital signal processor (DSK 6713). Results are illustrated to show the effectiveness of the proposed technique, in different noisy environments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1155/2010/452548", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Nonblind and Quasiblind Natural Preserve Transform Watermarking", 
    "pagination": "452548", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d4c28cdecd5cf4b6a5f32e1fc3549621f6ecc696bb35964c6197c2c86dac38e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2010/452548"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002792401"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2010/452548", 
      "https://app.dimensions.ai/details/publication/pub.1002792401"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1155/2010/452548"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2010/452548'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2010/452548'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2010/452548'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2010/452548'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2010/452548 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc4c79e2e041a4ff2810a62924909be6f
4 schema:citation sg:pub.10.1007/978-3-540-74827-4_40
5 https://doi.org/10.1016/j.cose.2005.05.001
6 https://doi.org/10.1016/j.patrec.2004.06.012
7 https://doi.org/10.1016/s0165-1684(98)00017-6
8 https://doi.org/10.1109/30.793411
9 https://doi.org/10.1109/41.954550
10 https://doi.org/10.1109/6046.890056
11 https://doi.org/10.1109/76.499834
12 https://doi.org/10.1109/76.905982
13 https://doi.org/10.1109/82.718818
14 https://doi.org/10.1109/83.650120
15 https://doi.org/10.1109/83.799882
16 https://doi.org/10.1109/83.817598
17 https://doi.org/10.1109/83.913599
18 https://doi.org/10.1109/ccece.2002.1013058
19 https://doi.org/10.1109/icip.2002.1040097
20 https://doi.org/10.1109/icip.2007.4379297
21 https://doi.org/10.1109/isspa.1999.818172
22 https://doi.org/10.1109/isspit.2008.4775687
23 https://doi.org/10.1109/tassp.1985.1164647
24 https://doi.org/10.1109/tcsvt.2003.815948
25 https://doi.org/10.1117/12.384968
26 https://doi.org/10.4218/etrij.02.0202.0502
27 schema:datePublished 2010-12
28 schema:datePublishedReg 2010-12-01
29 schema:description This paper describes a new image watermarking technique based on the Natural Preserving Transform (NPT). The proposed watermarking scheme uses NPT to encode a gray scale watermarking logo image or text, into a host image at any location. NPT brings a unique feature which is uniformly distributing the logo across the host image in an imperceptible manner. The contribution of this paper lies is presenting two efficient nonblind and quasiblind watermark extraction techniques. In the quasiblind case, the extraction algorithm requires little information about the original image that is already conveyed by the watermarked image. Moreover, the proposed scheme does not introduce visual quality degradation into the host image while still being able to extract a logo with a relatively large amount of data. The performance and robustness of the proposed technique are tested by applying common image-processing operations such as cropping, noise degradation, and compression. A quantitative measure is proposed to objectify performance; under this measure, the proposed technique outperforms most of the recent techniques in most cases. We also implemented the proposed technique on a hardware platform, digital signal processor (DSK 6713). Results are illustrated to show the effectiveness of the proposed technique, in different noisy environments.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N78f21c01cbbe4be59c3dc4316aa8e5bd
34 N901deb5281ab4cd997efdb3e7f5f570f
35 sg:journal.1357355
36 schema:name Nonblind and Quasiblind Natural Preserve Transform Watermarking
37 schema:pagination 452548
38 schema:productId N5a9a288228344adc9138c6d4f4a50993
39 Nc0d84d9fa14641fe834440eb5b8e2d59
40 Neaef201ebc694809a404421f974eca76
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002792401
42 https://doi.org/10.1155/2010/452548
43 schema:sdDatePublished 2019-04-10T19:54
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N36b7b47aed17495ab826ed4e291d8ea4
46 schema:url http://link.springer.com/10.1155/2010/452548
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N001a7fd2d6d540448f76fbef2d7dcd8f rdf:first N3edfba07c0e44f5baa0daca634902066
51 rdf:rest rdf:nil
52 N36b7b47aed17495ab826ed4e291d8ea4 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N3edfba07c0e44f5baa0daca634902066 schema:affiliation https://www.grid.ac/institutes/grid.252487.e
55 schema:familyName Mohammed
56 schema:givenName US
57 rdf:type schema:Person
58 N5a9a288228344adc9138c6d4f4a50993 schema:name dimensions_id
59 schema:value pub.1002792401
60 rdf:type schema:PropertyValue
61 N71474a9b48fd41f897edf3fcf1fa0c1b rdf:first sg:person.012376013410.91
62 rdf:rest N001a7fd2d6d540448f76fbef2d7dcd8f
63 N78f21c01cbbe4be59c3dc4316aa8e5bd schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N901deb5281ab4cd997efdb3e7f5f570f schema:volumeNumber 2010
66 rdf:type schema:PublicationVolume
67 Nc0d84d9fa14641fe834440eb5b8e2d59 schema:name doi
68 schema:value 10.1155/2010/452548
69 rdf:type schema:PropertyValue
70 Nc4c79e2e041a4ff2810a62924909be6f rdf:first sg:person.010027671351.05
71 rdf:rest N71474a9b48fd41f897edf3fcf1fa0c1b
72 Neaef201ebc694809a404421f974eca76 schema:name readcube_id
73 schema:value 0d4c28cdecd5cf4b6a5f32e1fc3549621f6ecc696bb35964c6197c2c86dac38e
74 rdf:type schema:PropertyValue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1357355 schema:issn 1687-0433
82 1687-6172
83 schema:name Applied Signal Processing
84 rdf:type schema:Periodical
85 sg:person.010027671351.05 schema:affiliation https://www.grid.ac/institutes/grid.187323.c
86 schema:familyName Fahmy
87 schema:givenName G
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027671351.05
89 rdf:type schema:Person
90 sg:person.012376013410.91 schema:affiliation https://www.grid.ac/institutes/grid.252487.e
91 schema:familyName Fahmy
92 schema:givenName MF
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376013410.91
94 rdf:type schema:Person
95 sg:pub.10.1007/978-3-540-74827-4_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050526517
96 https://doi.org/10.1007/978-3-540-74827-4_40
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.cose.2005.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035892880
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.patrec.2004.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038056901
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0165-1684(98)00017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032958566
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/30.793411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061152077
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/41.954550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169858
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/6046.890056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061198504
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/76.499834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222004
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/76.905982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222494
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/82.718818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238379
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/83.650120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239673
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/83.799882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240002
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/83.817598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240037
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/83.913599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240304
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/ccece.2002.1013058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093613546
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/icip.2002.1040097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094933853
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/icip.2007.4379297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093913792
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/isspa.1999.818172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095192060
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/isspit.2008.4775687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093776851
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tassp.1985.1164647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519694
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tcsvt.2003.815948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574458
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1117/12.384968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049479598
139 rdf:type schema:CreativeWork
140 https://doi.org/10.4218/etrij.02.0202.0502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072377855
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.187323.c schema:alternateName German University in Cairo
143 schema:name German University in Cairo (GUC), 11835, New Cairo City, Egypt
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.252487.e schema:alternateName Assiut University
146 schema:name Department of Electrical Engineering, Assiut University, 71515, Assiut, Egypt
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...