Probabilities as Values of Modular Forms and Continued Fractions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009

AUTHORS

Riad Masri, Ken Ono

ABSTRACT

We consider certain probability problems which are naturally related to integer partitions. We show that the corresponding probabilities are values of classical modular forms. Thanks to this connection, we then show that certain ratios of probabilities are specializations of the Rogers-Ramanujan and Ramanujan- Selberg- Gordon-Göllnitz continued fractions. One particular evaluation depends on a result from Ramanujan's famous first letter to Hardy. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2009/941920

DOI

http://dx.doi.org/10.1155/2009/941920

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014127052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masri", 
        "givenName": "Riad", 
        "id": "sg:person.0717644044.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Ken", 
        "id": "sg:person.015514774705.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514774705.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcta.2006.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025131069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500218102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031359718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-03-03417-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044320678"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We consider certain probability problems which are naturally related to integer partitions. We show that the corresponding probabilities are values of classical modular forms. Thanks to this connection, we then show that certain ratios of probabilities are specializations of the Rogers-Ramanujan and Ramanujan- Selberg- Gordon-G\u00f6llnitz continued fractions. One particular evaluation depends on a result from Ramanujan's famous first letter to Hardy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1155/2009/941920", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1048987", 
        "issn": [
          "0161-1712", 
          "1687-0425"
        ], 
        "name": "International Journal of Mathematics and Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2009"
      }
    ], 
    "name": "Probabilities as Values of Modular Forms and Continued Fractions", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "434ced859304cfe5d10dc1ed0c7cf851095787aea3307c5230c4281039e0fc74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2009/941920"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014127052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2009/941920", 
      "https://app.dimensions.ai/details/publication/pub.1014127052"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000024.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1155/2009/941920"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2009/941920'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2009/941920'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2009/941920'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2009/941920'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      21 PREDICATES      29 URIs      18 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2009/941920 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N28e324fd277644848a8e0433933f277e
4 schema:citation https://doi.org/10.1016/j.jcta.2006.06.010
5 https://doi.org/10.1073/pnas.0500218102
6 https://doi.org/10.1090/s0002-9947-03-03417-2
7 schema:datePublished 2009
8 schema:datePublishedReg 2009-01-01
9 schema:description We consider certain probability problems which are naturally related to integer partitions. We show that the corresponding probabilities are values of classical modular forms. Thanks to this connection, we then show that certain ratios of probabilities are specializations of the Rogers-Ramanujan and Ramanujan- Selberg- Gordon-Göllnitz continued fractions. One particular evaluation depends on a result from Ramanujan's famous first letter to Hardy.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N2e74a7f4b14b4457b60aa024b8d082e3
14 sg:journal.1048987
15 schema:name Probabilities as Values of Modular Forms and Continued Fractions
16 schema:pagination 1-11
17 schema:productId N82dea11f784346abac872c4a30256d95
18 Nc8c91ed6a0de4dce988459464cef5137
19 Ne56d6f75215942ce9fcc9396f6e3ed09
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014127052
21 https://doi.org/10.1155/2009/941920
22 schema:sdDatePublished 2019-04-10T20:12
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N1331be98bb8f4c5e9b050f1f9a510750
25 schema:url http://link.springer.com/10.1155/2009/941920
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1331be98bb8f4c5e9b050f1f9a510750 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N28e324fd277644848a8e0433933f277e rdf:first sg:person.0717644044.71
32 rdf:rest Nc5cbabecf3ea461cb931650051f8871a
33 N2e74a7f4b14b4457b60aa024b8d082e3 schema:volumeNumber 2009
34 rdf:type schema:PublicationVolume
35 N82dea11f784346abac872c4a30256d95 schema:name dimensions_id
36 schema:value pub.1014127052
37 rdf:type schema:PropertyValue
38 Nc5cbabecf3ea461cb931650051f8871a rdf:first sg:person.015514774705.04
39 rdf:rest rdf:nil
40 Nc8c91ed6a0de4dce988459464cef5137 schema:name doi
41 schema:value 10.1155/2009/941920
42 rdf:type schema:PropertyValue
43 Ne56d6f75215942ce9fcc9396f6e3ed09 schema:name readcube_id
44 schema:value 434ced859304cfe5d10dc1ed0c7cf851095787aea3307c5230c4281039e0fc74
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1048987 schema:issn 0161-1712
53 1687-0425
54 schema:name International Journal of Mathematics and Mathematical Sciences
55 rdf:type schema:Periodical
56 sg:person.015514774705.04 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
57 schema:familyName Ono
58 schema:givenName Ken
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514774705.04
60 rdf:type schema:Person
61 sg:person.0717644044.71 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
62 schema:familyName Masri
63 schema:givenName Riad
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71
65 rdf:type schema:Person
66 https://doi.org/10.1016/j.jcta.2006.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025131069
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1073/pnas.0500218102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031359718
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1090/s0002-9947-03-03417-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044320678
71 rdf:type schema:CreativeWork
72 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
73 schema:name Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...