Subgraphs Matching-Based Side Information Generation for Distributed Multiview Video Coding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Hongkai Xiong, Hui Lv, Yongsheng Zhang, Li Song, Zhihai He, Tsuhan Chen

ABSTRACT

We adopt constrained relaxation for distributed multiview video coding (DMVC). The novel framework integrates the graph-based segmentation and matching to generate interview correlated side information without knowing the camera parameters, inspired by subgraph semantics and sparse decomposition of high-dimensional scale invariant feature data. The sparse data as a good hypothesis space aim for a best matching optimization of interview side information with compact syndromes, from inferred relaxed coset. The plausible filling-in from a priori feature constraints between neighboring views could reinforce a promising compensation to interview side-information generation for joint multiview decoding. The graph-based representations of multiview images are adopted as constrained relaxation, which assists the interview correlation matching for subgraph semantics of the original Wyner-Ziv image by the graph-based image segmentation and the associated scale invariant feature detector MSER (maximally stable extremal regions) and descriptor SIFT (scale-invariant feature transform). In order to find a distinctive feature matching with a more stable approximation, linear (PCA-SIFT) and nonlinear projections (Locally linear embedding) are adopted to reduce the dimension SIFT descriptors, and TPS (thin plate spline) warping model is to catch a more accurate interview motion model. The experimental results validate the high-estimation precision and the rate-distortion improvements. More... »

PAGES

386795

References to SciGraph publications

  • 2004-09. Efficient Graph-Based Image Segmentation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2004-10. Scale & Affine Invariant Interest Point Detectors in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1155/2009/386795

    DOI

    http://dx.doi.org/10.1155/2009/386795

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027215398


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carnegie Mellon University", 
              "id": "https://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China", 
                "Department of Electrical and Computer Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Hongkai", 
            "id": "sg:person.01315340564.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315340564.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lv", 
            "givenName": "Hui", 
            "id": "sg:person.011747744352.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747744352.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yongsheng", 
            "id": "sg:person.010121645575.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121645575.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Li", 
            "id": "sg:person.012046537235.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012046537235.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Missouri", 
              "id": "https://www.grid.ac/institutes/grid.134936.a", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Missouri-Columbia, 65211, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Zhihai", 
            "id": "sg:person.01161411401.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161411401.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carnegie Mellon University", 
              "id": "https://www.grid.ac/institutes/grid.147455.6", 
              "name": [
                "Department of Electrical and Computer Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Tsuhan", 
            "id": "sg:person.012245072625.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.image.2008.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002159901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000022288.19776.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009092998", 
              "https://doi.org/10.1023/b:visi.0000022288.19776.77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000027790.02288.f2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024638466", 
              "https://doi.org/10.1023/b:visi.0000027790.02288.f2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358669.358692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033921345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/76.836284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061222384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2004.839619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsvt.2009.2022783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061575419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2002.808103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2003.810622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649782"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "We adopt constrained relaxation for distributed multiview video coding (DMVC). The novel framework integrates the graph-based segmentation and matching to generate interview correlated side information without knowing the camera parameters, inspired by subgraph semantics and sparse decomposition of high-dimensional scale invariant feature data. The sparse data as a good hypothesis space aim for a best matching optimization of interview side information with compact syndromes, from inferred relaxed coset. The plausible filling-in from a priori feature constraints between neighboring views could reinforce a promising compensation to interview side-information generation for joint multiview decoding. The graph-based representations of multiview images are adopted as constrained relaxation, which assists the interview correlation matching for subgraph semantics of the original Wyner-Ziv image by the graph-based image segmentation and the associated scale invariant feature detector MSER (maximally stable extremal regions) and descriptor SIFT (scale-invariant feature transform). In order to find a distinctive feature matching with a more stable approximation, linear (PCA-SIFT) and nonlinear projections (Locally linear embedding) are adopted to reduce the dimension SIFT descriptors, and TPS (thin plate spline) warping model is to catch a more accurate interview motion model. The experimental results validate the high-estimation precision and the rate-distortion improvements.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1155/2009/386795", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1357355", 
            "issn": [
              "1687-6172", 
              "1687-0433"
            ], 
            "name": "Applied Signal Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2009"
          }
        ], 
        "name": "Subgraphs Matching-Based Side Information Generation for Distributed Multiview Video Coding", 
        "pagination": "386795", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "81a49a241b876d139c55ef393e31c84e4374d8ad40a3703c0c30865924bc8c7e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1155/2009/386795"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027215398"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1155/2009/386795", 
          "https://app.dimensions.ai/details/publication/pub.1027215398"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000499.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1155/2009/386795"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2009/386795'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2009/386795'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2009/386795'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2009/386795'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1155/2009/386795 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb078c7b8238c457db962d2c686b5267a
    4 schema:citation sg:pub.10.1023/b:visi.0000022288.19776.77
    5 sg:pub.10.1023/b:visi.0000027790.02288.f2
    6 sg:pub.10.1023/b:visi.0000029664.99615.94
    7 https://doi.org/10.1016/j.image.2008.03.002
    8 https://doi.org/10.1109/76.836284
    9 https://doi.org/10.1109/jproc.2004.839619
    10 https://doi.org/10.1109/tcsvt.2009.2022783
    11 https://doi.org/10.1109/tit.2002.808103
    12 https://doi.org/10.1109/tit.2003.810622
    13 https://doi.org/10.1145/358669.358692
    14 schema:datePublished 2010-12
    15 schema:datePublishedReg 2010-12-01
    16 schema:description We adopt constrained relaxation for distributed multiview video coding (DMVC). The novel framework integrates the graph-based segmentation and matching to generate interview correlated side information without knowing the camera parameters, inspired by subgraph semantics and sparse decomposition of high-dimensional scale invariant feature data. The sparse data as a good hypothesis space aim for a best matching optimization of interview side information with compact syndromes, from inferred relaxed coset. The plausible filling-in from a priori feature constraints between neighboring views could reinforce a promising compensation to interview side-information generation for joint multiview decoding. The graph-based representations of multiview images are adopted as constrained relaxation, which assists the interview correlation matching for subgraph semantics of the original Wyner-Ziv image by the graph-based image segmentation and the associated scale invariant feature detector MSER (maximally stable extremal regions) and descriptor SIFT (scale-invariant feature transform). In order to find a distinctive feature matching with a more stable approximation, linear (PCA-SIFT) and nonlinear projections (Locally linear embedding) are adopted to reduce the dimension SIFT descriptors, and TPS (thin plate spline) warping model is to catch a more accurate interview motion model. The experimental results validate the high-estimation precision and the rate-distortion improvements.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N07bd5b1d5c124b499ea9e5f5f3dbb3cc
    21 N8f879c8b03054f21b21976906ac273fb
    22 sg:journal.1357355
    23 schema:name Subgraphs Matching-Based Side Information Generation for Distributed Multiview Video Coding
    24 schema:pagination 386795
    25 schema:productId N56a83b322e7b4689b00af9fb6f824e82
    26 N6db6273354c3467288c87819096dff99
    27 Ne3df170d1eea40a29afe5350e26a258f
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027215398
    29 https://doi.org/10.1155/2009/386795
    30 schema:sdDatePublished 2019-04-10T19:06
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N58b7ce0c12f445999a86e9c8a15f9ad3
    33 schema:url http://link.springer.com/10.1155/2009/386795
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N0479c77f920a49259f930bdfb25550b9 rdf:first sg:person.01161411401.94
    38 rdf:rest Nb9a39b98cede4335bece6e3ce7a8f4d1
    39 N07bd5b1d5c124b499ea9e5f5f3dbb3cc schema:volumeNumber 2009
    40 rdf:type schema:PublicationVolume
    41 N0f227ac4ee8749eb8f87d24930333f3b rdf:first sg:person.011747744352.04
    42 rdf:rest Ndb52fe3acc494e148d290a0b9bbb852d
    43 N56a83b322e7b4689b00af9fb6f824e82 schema:name doi
    44 schema:value 10.1155/2009/386795
    45 rdf:type schema:PropertyValue
    46 N58b7ce0c12f445999a86e9c8a15f9ad3 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N6db6273354c3467288c87819096dff99 schema:name readcube_id
    49 schema:value 81a49a241b876d139c55ef393e31c84e4374d8ad40a3703c0c30865924bc8c7e
    50 rdf:type schema:PropertyValue
    51 N8f879c8b03054f21b21976906ac273fb schema:issueNumber 1
    52 rdf:type schema:PublicationIssue
    53 Nb078c7b8238c457db962d2c686b5267a rdf:first sg:person.01315340564.27
    54 rdf:rest N0f227ac4ee8749eb8f87d24930333f3b
    55 Nb9a39b98cede4335bece6e3ce7a8f4d1 rdf:first sg:person.012245072625.31
    56 rdf:rest rdf:nil
    57 Nbe768e6857a44c5abe7c7eaac608ca0c rdf:first sg:person.012046537235.40
    58 rdf:rest N0479c77f920a49259f930bdfb25550b9
    59 Ndb52fe3acc494e148d290a0b9bbb852d rdf:first sg:person.010121645575.32
    60 rdf:rest Nbe768e6857a44c5abe7c7eaac608ca0c
    61 Ne3df170d1eea40a29afe5350e26a258f schema:name dimensions_id
    62 schema:value pub.1027215398
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Information and Computing Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Artificial Intelligence and Image Processing
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1357355 schema:issn 1687-0433
    71 1687-6172
    72 schema:name Applied Signal Processing
    73 rdf:type schema:Periodical
    74 sg:person.010121645575.32 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    75 schema:familyName Zhang
    76 schema:givenName Yongsheng
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121645575.32
    78 rdf:type schema:Person
    79 sg:person.01161411401.94 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
    80 schema:familyName He
    81 schema:givenName Zhihai
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161411401.94
    83 rdf:type schema:Person
    84 sg:person.011747744352.04 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    85 schema:familyName Lv
    86 schema:givenName Hui
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747744352.04
    88 rdf:type schema:Person
    89 sg:person.012046537235.40 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    90 schema:familyName Song
    91 schema:givenName Li
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012046537235.40
    93 rdf:type schema:Person
    94 sg:person.012245072625.31 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
    95 schema:familyName Chen
    96 schema:givenName Tsuhan
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31
    98 rdf:type schema:Person
    99 sg:person.01315340564.27 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
    100 schema:familyName Xiong
    101 schema:givenName Hongkai
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315340564.27
    103 rdf:type schema:Person
    104 sg:pub.10.1023/b:visi.0000022288.19776.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092998
    105 https://doi.org/10.1023/b:visi.0000022288.19776.77
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1023/b:visi.0000027790.02288.f2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638466
    108 https://doi.org/10.1023/b:visi.0000027790.02288.f2
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    111 https://doi.org/10.1023/b:visi.0000029664.99615.94
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.image.2008.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159901
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/76.836284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222384
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/jproc.2004.839619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296358
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/tcsvt.2009.2022783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575419
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/tit.2002.808103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649736
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/tit.2003.810622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649782
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
    128 schema:name Department of Electrical and Computer Engineering, University of Missouri-Columbia, 65211, MO, USA
    129 rdf:type schema:Organization
    130 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
    131 schema:name Department of Electrical and Computer Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
    132 Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
    135 schema:name Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...