Biometric Template Security View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008

AUTHORS

Anil K Jain, Karthik Nandakumar, Abhishek Nagar

ABSTRACT

Biometric recognition offers a reliable solution to the problem of user authentication in identity management systems. With the widespread deployment of biometric systems in various applications, there are increasing concerns about the security and privacy of biometric technology. Public acceptance of biometrics technology will depend on the ability of system designers to demonstrate that these systems are robust, have low error rates, and are tamper proof. We present a high-level categorization of the various vulnerabilities of a biometric system and discuss countermeasures that have been proposed to address these vulnerabilities. In particular, we focus on biometric template security which is an important issue because, unlike passwords and tokens, compromised biometric templates cannot be revoked and reissued. Protecting the template is a challenging task due to intrauser variability in the acquired biometric traits. We present an overview of various biometric template protection schemes and discuss their advantages and limitations in terms of security, revocability, and impact on matching accuracy. A template protection scheme with provable security and acceptable recognition performance has thus far remained elusive. Development of such a scheme is crucial as biometric systems are beginning to proliferate into the core physical and information infrastructure of our society. More... »

PAGES

579416

Identifiers

URI

http://scigraph.springernature.com/pub.10.1155/2008/579416

DOI

http://dx.doi.org/10.1155/2008/579416

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036338058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science and Engineering, Michigan State University, 3115 Engineering Building, East Lansing, MI 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science and Engineering, Michigan State University, 3115 Engineering Building, East Lansing, MI 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandakumar", 
        "givenName": "Karthik", 
        "id": "sg:person.013262445601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445601.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science and Engineering, Michigan State University, 3115 Engineering Building, East Lansing, MI 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagar", 
        "givenName": "Abhishek", 
        "id": "sg:person.012606063074.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606063074.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cviu.2006.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009420074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2004.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021765306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00349-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041063546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cose.2006.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(01)00247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043419978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0000(79)90044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049707404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.587996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.598228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2004.827372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mspec.2006.1653001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061429181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2006.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2006.873653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2006.879289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2007.902022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2007.908165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2005.848192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2005.848192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797849"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Biometric recognition offers a reliable solution to the problem of user authentication in identity management systems. With the widespread deployment of biometric systems in various applications, there are increasing concerns about the security and privacy of biometric technology. Public acceptance of biometrics technology will depend on the ability of system designers to demonstrate that these systems are robust, have low error rates, and are tamper proof. We present a high-level categorization of the various vulnerabilities of a biometric system and discuss countermeasures that have been proposed to address these vulnerabilities. In particular, we focus on biometric template security which is an important issue because, unlike passwords and tokens, compromised biometric templates cannot be revoked and reissued. Protecting the template is a challenging task due to intrauser variability in the acquired biometric traits. We present an overview of various biometric template protection schemes and discuss their advantages and limitations in terms of security, revocability, and impact on matching accuracy. A template protection scheme with provable security and acceptable recognition performance has thus far remained elusive. Development of such a scheme is crucial as biometric systems are beginning to proliferate into the core physical and information infrastructure of our society.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1155/2008/579416", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2008"
      }
    ], 
    "name": "Biometric Template Security", 
    "pagination": "579416", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad19b7fe39eaf53dd7e5a10aec494580b96ce651d8d51bee9c5a375a36f936d0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1155/2008/579416"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036338058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1155/2008/579416", 
      "https://app.dimensions.ai/details/publication/pub.1036338058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000300.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://asp.eurasipjournals.com/content/2008/1/579416/abstract"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1155/2008/579416'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1155/2008/579416'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1155/2008/579416'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1155/2008/579416'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1155/2008/579416 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7cb5c5805c1840388ffdc4470f607270
4 schema:citation https://doi.org/10.1016/0022-0000(79)90044-8
5 https://doi.org/10.1016/j.cose.2006.12.008
6 https://doi.org/10.1016/j.cviu.2006.01.002
7 https://doi.org/10.1016/j.ipl.2004.09.014
8 https://doi.org/10.1016/s0031-3203(01)00247-3
9 https://doi.org/10.1016/s0031-3203(02)00349-7
10 https://doi.org/10.1109/34.587996
11 https://doi.org/10.1109/34.598228
12 https://doi.org/10.1109/jproc.2004.827372
13 https://doi.org/10.1109/mspec.2006.1653001
14 https://doi.org/10.1109/tc.2006.138
15 https://doi.org/10.1109/tifs.2006.873653
16 https://doi.org/10.1109/tifs.2006.879289
17 https://doi.org/10.1109/tifs.2007.902022
18 https://doi.org/10.1109/tifs.2007.908165
19 https://doi.org/10.1109/tpami.2006.250
20 https://doi.org/10.1109/tpami.2007.1004
21 https://doi.org/10.1109/tpami.2007.1018
22 https://doi.org/10.1109/tpami.2007.1087
23 https://doi.org/10.1109/tsmcc.2005.848192
24 schema:datePublished 2008
25 schema:datePublishedReg 2008-01-01
26 schema:description Biometric recognition offers a reliable solution to the problem of user authentication in identity management systems. With the widespread deployment of biometric systems in various applications, there are increasing concerns about the security and privacy of biometric technology. Public acceptance of biometrics technology will depend on the ability of system designers to demonstrate that these systems are robust, have low error rates, and are tamper proof. We present a high-level categorization of the various vulnerabilities of a biometric system and discuss countermeasures that have been proposed to address these vulnerabilities. In particular, we focus on biometric template security which is an important issue because, unlike passwords and tokens, compromised biometric templates cannot be revoked and reissued. Protecting the template is a challenging task due to intrauser variability in the acquired biometric traits. We present an overview of various biometric template protection schemes and discuss their advantages and limitations in terms of security, revocability, and impact on matching accuracy. A template protection scheme with provable security and acceptable recognition performance has thus far remained elusive. Development of such a scheme is crucial as biometric systems are beginning to proliferate into the core physical and information infrastructure of our society.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N8191bade62f449c38e5a455c3911a374
31 Naea654bfd1234b639a993886a4e3af1b
32 sg:journal.1357355
33 schema:name Biometric Template Security
34 schema:pagination 579416
35 schema:productId N1cde4ab481de41d598976fac92a675b2
36 Nd0ac3b5656e24bf3adc5182cb8a57938
37 Nf2fa40681c564f468c68dfd68ebb4461
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036338058
39 https://doi.org/10.1155/2008/579416
40 schema:sdDatePublished 2019-04-10T23:55
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N4e38b01245a5494e8f358c868426cfd8
43 schema:url http://asp.eurasipjournals.com/content/2008/1/579416/abstract
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1cde4ab481de41d598976fac92a675b2 schema:name dimensions_id
48 schema:value pub.1036338058
49 rdf:type schema:PropertyValue
50 N1e5bf468c44a4f9f9c61e89812568266 rdf:first sg:person.013262445601.05
51 rdf:rest Nbac6dbdf729740bfa3babd1cb049e9f9
52 N4e38b01245a5494e8f358c868426cfd8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N7cb5c5805c1840388ffdc4470f607270 rdf:first sg:person.01031110710.30
55 rdf:rest N1e5bf468c44a4f9f9c61e89812568266
56 N8191bade62f449c38e5a455c3911a374 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 Naea654bfd1234b639a993886a4e3af1b schema:volumeNumber 2008
59 rdf:type schema:PublicationVolume
60 Nbac6dbdf729740bfa3babd1cb049e9f9 rdf:first sg:person.012606063074.23
61 rdf:rest rdf:nil
62 Nd0ac3b5656e24bf3adc5182cb8a57938 schema:name doi
63 schema:value 10.1155/2008/579416
64 rdf:type schema:PropertyValue
65 Nf2fa40681c564f468c68dfd68ebb4461 schema:name readcube_id
66 schema:value ad19b7fe39eaf53dd7e5a10aec494580b96ce651d8d51bee9c5a375a36f936d0
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:journal.1357355 schema:issn 1687-0433
75 1687-6172
76 schema:name Applied Signal Processing
77 rdf:type schema:Periodical
78 sg:person.01031110710.30 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
79 schema:familyName Jain
80 schema:givenName Anil K
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
82 rdf:type schema:Person
83 sg:person.012606063074.23 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
84 schema:familyName Nagar
85 schema:givenName Abhishek
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606063074.23
87 rdf:type schema:Person
88 sg:person.013262445601.05 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
89 schema:familyName Nandakumar
90 schema:givenName Karthik
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445601.05
92 rdf:type schema:Person
93 https://doi.org/10.1016/0022-0000(79)90044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049707404
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.cose.2006.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981030
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cviu.2006.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009420074
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ipl.2004.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765306
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0031-3203(01)00247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043419978
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0031-3203(02)00349-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041063546
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/34.587996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156580
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/34.598228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156617
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/jproc.2004.827372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296270
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/mspec.2006.1653001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061429181
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tc.2006.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534228
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tifs.2006.873653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629439
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tifs.2006.879289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629443
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tifs.2007.902022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629489
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tifs.2007.908165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629521
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tpami.2006.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743077
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tpami.2007.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743143
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tpami.2007.1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743157
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tpami.2007.1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743212
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tsmcc.2005.848192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797849
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
134 schema:name Department of Computer Science and Engineering, Michigan State University, 3115 Engineering Building, East Lansing, MI 48824, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...