Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Antonio Politi, Ekkehard Ullner, Alessandro Torcini

ABSTRACT

We extensively explore networks of weakly unbalanced, leaky integrate-and-fire (LIF) neurons for different coupling strength, connectivity, and by varying the degree of refractoriness, as well as the delay in the spike transmission. We find that the neural network does not only exhibit a microscopic (single-neuron) stochastic-like evolution, but also a collective irregular dynamics (CID). Our analysis is based on the computation of a suitable order parameter, typically used to characterize synchronization phenomena and on a detailed scaling analysis (i.e. simulations of different network sizes). As a result, we can conclude that CID is a true thermodynamic phase, intrinsically different from the standard asynchronous regime. More... »

PAGES

1185-1204

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2018-00079-7

DOI

http://dx.doi.org/10.1140/epjst/e2018-00079-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110487698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Complex Systems and Mathematical Biology and Department of Physics (SUPA), Old Aberdeen, AB24 3UE, Aberdeen, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "Antonio", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Complex Systems and Mathematical Biology and Department of Physics (SUPA), Old Aberdeen, AB24 3UE, Aberdeen, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ullner", 
        "givenName": "Ekkehard", 
        "id": "sg:person.0633713253.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633713253.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.472642.1", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique et Mod\u00e9lisation, Universit\u00e9 de Cergy-Pontoise, CNRS, UMR 8089, 95302, Cergy-Pontoise cedex, France", 
            "CNR, Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torcini", 
        "givenName": "Alessandro", 
        "id": "sg:person.01107125122.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107125122.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/089892903321107891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000446225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2014.00104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000602832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008925309027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001166884", 
          "https://doi.org/10.1023/a:1008925309027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003945678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003945678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2006.10.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009413258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.041030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016722479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.041030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016722479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1001056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017015458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018034870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021838145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023835390", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87708-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023835390", 
          "https://doi.org/10.1007/978-0-387-87708-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87708-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023835390", 
          "https://doi.org/10.1007/978-0-387-87708-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.158104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028004819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.158104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028004819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030567916", 
          "https://doi.org/10.1007/bf01009897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-006-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043536093", 
          "https://doi.org/10.1007/s00422-006-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-006-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043536093", 
          "https://doi.org/10.1007/s00422-006-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2190-8567-2-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044969138", 
          "https://doi.org/10.1186/2190-8567-2-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.011015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046684146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.011015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046684146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.28.061604.135637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049238824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050896151", 
          "https://doi.org/10.1038/nn.3658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052719915", 
          "https://doi.org/10.1038/nn.3220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1179850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052874679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.040901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.040901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5293.1724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa69ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084173208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085051239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5007033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092422076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107447615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5049902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106423114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "We extensively explore networks of weakly unbalanced, leaky integrate-and-fire (LIF) neurons for different coupling strength, connectivity, and by varying the degree of refractoriness, as well as the delay in the spike transmission. We find that the neural network does not only exhibit a microscopic (single-neuron) stochastic-like evolution, but also a collective irregular dynamics (CID). Our analysis is based on the computation of a suitable order parameter, typically used to characterize synchronization phenomena and on a detailed scaling analysis (i.e. simulations of different network sizes). As a result, we can conclude that CID is a true thermodynamic phase, intrinsically different from the standard asynchronous regime.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2018-00079-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10-11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "227"
      }
    ], 
    "name": "Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons", 
    "pagination": "1185-1204", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb4217016cb09200576ccfcb0fcd44c935126299eb08a385206ab9681a55eb47"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2018-00079-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110487698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2018-00079-7", 
      "https://app.dimensions.ai/details/publication/pub.1110487698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000291_0000000291/records_105786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjst%2Fe2018-00079-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2018-00079-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2018-00079-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2018-00079-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2018-00079-7'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2018-00079-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ndbe279a8bfe54fc0b27a7952634ad819
4 schema:citation sg:pub.10.1007/978-0-387-87708-2
5 sg:pub.10.1007/bf01009897
6 sg:pub.10.1007/s00422-006-0068-6
7 sg:pub.10.1023/a:1008925309027
8 sg:pub.10.1038/nn.3220
9 sg:pub.10.1038/nn.3658
10 sg:pub.10.1186/2190-8567-2-12
11 https://app.dimensions.ai/details/publication/pub.1023835390
12 https://doi.org/10.1016/j.neucom.2006.10.138
13 https://doi.org/10.1017/cbo9781107447615
14 https://doi.org/10.1063/1.5007033
15 https://doi.org/10.1063/1.5049902
16 https://doi.org/10.1088/1367-2630/aa69ff
17 https://doi.org/10.1103/physreve.74.036203
18 https://doi.org/10.1103/physreve.92.040901
19 https://doi.org/10.1103/physrevlett.105.158104
20 https://doi.org/10.1103/physrevx.5.021028
21 https://doi.org/10.1103/physrevx.5.041030
22 https://doi.org/10.1103/physrevx.6.011015
23 https://doi.org/10.1126/science.1179850
24 https://doi.org/10.1126/science.274.5293.1724
25 https://doi.org/10.1146/annurev.neuro.28.061604.135637
26 https://doi.org/10.1162/089892903321107891
27 https://doi.org/10.1371/journal.pcbi.1000092
28 https://doi.org/10.1371/journal.pcbi.1001056
29 https://doi.org/10.1371/journal.pcbi.1002954
30 https://doi.org/10.1371/journal.pcbi.1005498
31 https://doi.org/10.3389/fncom.2014.00104
32 schema:datePublished 2018-11
33 schema:datePublishedReg 2018-11-01
34 schema:description We extensively explore networks of weakly unbalanced, leaky integrate-and-fire (LIF) neurons for different coupling strength, connectivity, and by varying the degree of refractoriness, as well as the delay in the spike transmission. We find that the neural network does not only exhibit a microscopic (single-neuron) stochastic-like evolution, but also a collective irregular dynamics (CID). Our analysis is based on the computation of a suitable order parameter, typically used to characterize synchronization phenomena and on a detailed scaling analysis (i.e. simulations of different network sizes). As a result, we can conclude that CID is a true thermodynamic phase, intrinsically different from the standard asynchronous regime.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N601e38ee5c4b464687f6259f34d77770
39 N7dc135cc845e4ef6ab5dc2fb78f0d720
40 sg:journal.1297403
41 schema:name Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons
42 schema:pagination 1185-1204
43 schema:productId N0046c4f96f4e40ed85979c2a155bdc34
44 N1347d8b4849648afb881bec699df624e
45 N4ee6e6f8c20c4defb5b88c78f06a049c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110487698
47 https://doi.org/10.1140/epjst/e2018-00079-7
48 schema:sdDatePublished 2019-04-11T08:21
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nba098cb3d3e043fd93141cd08daf2c8a
51 schema:url https://link.springer.com/10.1140%2Fepjst%2Fe2018-00079-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0046c4f96f4e40ed85979c2a155bdc34 schema:name readcube_id
56 schema:value cb4217016cb09200576ccfcb0fcd44c935126299eb08a385206ab9681a55eb47
57 rdf:type schema:PropertyValue
58 N1347d8b4849648afb881bec699df624e schema:name doi
59 schema:value 10.1140/epjst/e2018-00079-7
60 rdf:type schema:PropertyValue
61 N25fc296918b140a2a186121df0a4b196 rdf:first sg:person.0633713253.51
62 rdf:rest Nc32c51d8294b4c4db9daa2f661df5967
63 N4a27464fd4fd43ed937c2738bf8d607f schema:name Institute for Complex Systems and Mathematical Biology and Department of Physics (SUPA), Old Aberdeen, AB24 3UE, Aberdeen, UK
64 rdf:type schema:Organization
65 N4ee6e6f8c20c4defb5b88c78f06a049c schema:name dimensions_id
66 schema:value pub.1110487698
67 rdf:type schema:PropertyValue
68 N601e38ee5c4b464687f6259f34d77770 schema:volumeNumber 227
69 rdf:type schema:PublicationVolume
70 N7dc135cc845e4ef6ab5dc2fb78f0d720 schema:issueNumber 10-11
71 rdf:type schema:PublicationIssue
72 N9ba304b83df04ee78c207447c77da49e schema:name Institute for Complex Systems and Mathematical Biology and Department of Physics (SUPA), Old Aberdeen, AB24 3UE, Aberdeen, UK
73 rdf:type schema:Organization
74 Nba098cb3d3e043fd93141cd08daf2c8a schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nc32c51d8294b4c4db9daa2f661df5967 rdf:first sg:person.01107125122.88
77 rdf:rest rdf:nil
78 Ndbe279a8bfe54fc0b27a7952634ad819 rdf:first sg:person.013264105675.78
79 rdf:rest N25fc296918b140a2a186121df0a4b196
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
84 schema:name Applied Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1297403 schema:issn 1951-6355
87 1951-6401
88 schema:name The European Physical Journal Special Topics
89 rdf:type schema:Periodical
90 sg:person.01107125122.88 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
91 schema:familyName Torcini
92 schema:givenName Alessandro
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107125122.88
94 rdf:type schema:Person
95 sg:person.013264105675.78 schema:affiliation N9ba304b83df04ee78c207447c77da49e
96 schema:familyName Politi
97 schema:givenName Antonio
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
99 rdf:type schema:Person
100 sg:person.0633713253.51 schema:affiliation N4a27464fd4fd43ed937c2738bf8d607f
101 schema:familyName Ullner
102 schema:givenName Ekkehard
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633713253.51
104 rdf:type schema:Person
105 sg:pub.10.1007/978-0-387-87708-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023835390
106 https://doi.org/10.1007/978-0-387-87708-2
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01009897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030567916
109 https://doi.org/10.1007/bf01009897
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00422-006-0068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043536093
112 https://doi.org/10.1007/s00422-006-0068-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1008925309027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001166884
115 https://doi.org/10.1023/a:1008925309027
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nn.3220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052719915
118 https://doi.org/10.1038/nn.3220
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nn.3658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050896151
121 https://doi.org/10.1038/nn.3658
122 rdf:type schema:CreativeWork
123 sg:pub.10.1186/2190-8567-2-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044969138
124 https://doi.org/10.1186/2190-8567-2-12
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1023835390 schema:CreativeWork
127 https://doi.org/10.1016/j.neucom.2006.10.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009413258
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/cbo9781107447615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664533
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.5007033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092422076
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.5049902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106423114
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/1367-2630/aa69ff schema:sameAs https://app.dimensions.ai/details/publication/pub.1084173208
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.74.036203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049776572
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.92.040901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060748218
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.105.158104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028004819
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevx.5.021028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003945678
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevx.5.041030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016722479
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevx.6.011015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046684146
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.1179850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052874679
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.274.5293.1724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555144
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1146/annurev.neuro.28.061604.135637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049238824
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1162/089892903321107891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000446225
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1371/journal.pcbi.1000092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021838145
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1371/journal.pcbi.1001056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017015458
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pcbi.1002954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018034870
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1371/journal.pcbi.1005498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085051239
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3389/fncom.2014.00104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000602832
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.472642.1 schema:alternateName Institute for Complex Systems
168 schema:name CNR, Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
169 Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302, Cergy-Pontoise cedex, France
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...