On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Gennaro Auletta, Lamberto Rondoni, Angelo Vulpiani

ABSTRACT

At first glance, the maximum entropy principle (MEP) apparently allows us to derive, or justify in a simple way, fundamental results of equilibrium statistical mechanics. Because of this, a school of thought considers the MEP as a powerful and elegant way to make predictions in physics and other disciplines, rather than a useful technical tool like others in statistical physics. From this point of view the MEP appears as an alternative and more general predictive method than the traditional ones of statistical physics. Actually, careful inspection shows that such a success is due to a series of fortunate facts that characterize the physics of equilibrium systems, but which are absent in situations not described by Hamiltonian dynamics, or generically in nonequilibrium phenomena. Here we discuss several important examples in non equilibrium statistical mechanics, in which the MEP leads to incorrect predictions, proving that it does not have a predictive nature. We conclude that, in these paradigmatic examples, an approach that uses a detailed analysis of the relevant aspects of the dynamics cannot be avoided. More... »

PAGES

2327-2343

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2017-70064-x

DOI

http://dx.doi.org/10.1140/epjst/e2017-70064-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084862174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cassino and Southern Lazio", 
          "id": "https://www.grid.ac/institutes/grid.21003.30", 
          "name": [
            "University of Cassino, 03043, Cassino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auletta", 
        "givenName": "Gennaro", 
        "id": "sg:person.0717573451.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717573451.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy", 
            "INFN, Sezione di Torino, Via Pietro Giuria 1, 10125, Torino, Italy", 
            "Kavli Institute for Theoretical Physics China, CAS, 100190, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rondoni", 
        "givenName": "Lamberto", 
        "id": "sg:person.01224373551.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224373551.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.472642.1", 
          "name": [
            "Kavli Institute for Theoretical Physics China, CAS, 100190, Beijing, P.R. China", 
            "Universit\u00e0 di Roma \u201cSapienza\u201d, Dipartimento di Fisica, Rome, Italy", 
            "CNR, Istituto Sistemi Complessi, P.le A. Moro 2, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.71.056120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.056120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003493177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003493177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1355-2198(95)00022-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003654329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9372-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004438438", 
          "https://doi.org/10.1007/s10955-007-9372-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/36/3/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004478159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1355-2198(95)00015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010812375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013665323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004604804070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015100810", 
          "https://doi.org/10.1023/a:1004604804070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2003.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018520508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022239028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/20/10/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025739176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026053107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028664748", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-06361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028664748", 
          "https://doi.org/10.1007/978-3-319-06361-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-06361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028664748", 
          "https://doi.org/10.1007/978-3-319-06361-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2013/12/p12003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029138534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.021111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.021111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031168155", 
          "https://doi.org/10.1007/s002200050200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.4785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031824392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.4785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031824392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90268-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032344904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(92)90268-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032344904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01008275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033470934", 
          "https://doi.org/10.1007/bf01008275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036460658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036460658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042272723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024679505651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042801724", 
          "https://doi.org/10.1023/a:1024679505651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014538214117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044308391", 
          "https://doi.org/10.1023/a:1014538214117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-006-9047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050191925", 
          "https://doi.org/10.1007/s10955-006-9047-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-006-9047-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050191925", 
          "https://doi.org/10.1007/s10955-006-9047-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-015-2779-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051084225", 
          "https://doi.org/10.1007/s10773-015-2779-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2006-10102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052561063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0253-6102/62/4/04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059046964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/21/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/21/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.050601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2014.2306251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511599972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098680247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199608485.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/0073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098876827"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "At first glance, the maximum entropy principle (MEP) apparently allows us to derive, or justify in a simple way, fundamental results of equilibrium statistical mechanics. Because of this, a school of thought considers the MEP as a powerful and elegant way to make predictions in physics and other disciplines, rather than a useful technical tool like others in statistical physics. From this point of view the MEP appears as an alternative and more general predictive method than the traditional ones of statistical physics. Actually, careful inspection shows that such a success is due to a series of fortunate facts that characterize the physics of equilibrium systems, but which are absent in situations not described by Hamiltonian dynamics, or generically in nonequilibrium phenomena. Here we discuss several important examples in non equilibrium statistical mechanics, in which the MEP leads to incorrect predictions, proving that it does not have a predictive nature. We conclude that, in these paradigmatic examples, an approach that uses a detailed analysis of the relevant aspects of the dynamics cannot be avoided.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2017-70064-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "226"
      }
    ], 
    "name": "On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics", 
    "pagination": "2327-2343", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "936da86f84fb8b9ed9d7c07a0d85fdcaae3079b34d5bd079b982a87c93b6fbf2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2017-70064-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084862174"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2017-70064-x", 
      "https://app.dimensions.ai/details/publication/pub.1084862174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54310_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjst%2Fe2017-70064-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2017-70064-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2017-70064-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2017-70064-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2017-70064-x'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2017-70064-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3ad0badc8d0f478fa106e96f6fdfb015
4 schema:citation sg:pub.10.1007/978-3-319-06361-4
5 sg:pub.10.1007/bf01008275
6 sg:pub.10.1007/s002200050200
7 sg:pub.10.1007/s10773-015-2779-8
8 sg:pub.10.1007/s10955-006-9047-5
9 sg:pub.10.1007/s10955-007-9372-3
10 sg:pub.10.1023/a:1004604804070
11 sg:pub.10.1023/a:1014538214117
12 sg:pub.10.1023/a:1024679505651
13 https://app.dimensions.ai/details/publication/pub.1028664748
14 https://doi.org/10.1016/0375-9601(92)90268-q
15 https://doi.org/10.1016/1355-2198(95)00015-1
16 https://doi.org/10.1016/1355-2198(95)00022-4
17 https://doi.org/10.1016/j.physa.2007.06.036
18 https://doi.org/10.1016/j.physa.2015.09.036
19 https://doi.org/10.1016/j.physd.2003.09.029
20 https://doi.org/10.1016/j.physrep.2008.02.002
21 https://doi.org/10.1017/cbo9780511599972
22 https://doi.org/10.1063/1.881363
23 https://doi.org/10.1088/0253-6102/62/4/04
24 https://doi.org/10.1088/0305-4470/36/3/303
25 https://doi.org/10.1088/0305-4470/38/21/l01
26 https://doi.org/10.1088/0951-7715/20/10/r01
27 https://doi.org/10.1088/1742-5468/2013/12/p12003
28 https://doi.org/10.1093/acprof:oso/9780199608485.001.0001
29 https://doi.org/10.1103/physrev.106.620
30 https://doi.org/10.1103/physrev.108.171
31 https://doi.org/10.1103/physrev.91.1505
32 https://doi.org/10.1103/physreva.43.798
33 https://doi.org/10.1103/physreve.53.4785
34 https://doi.org/10.1103/physreve.67.046102
35 https://doi.org/10.1103/physreve.71.056120
36 https://doi.org/10.1103/physreve.74.021111
37 https://doi.org/10.1103/physreve.75.061101
38 https://doi.org/10.1103/physrevlett.89.050601
39 https://doi.org/10.1109/jproc.2014.2306251
40 https://doi.org/10.1142/0073
41 https://doi.org/10.1209/epl/i2006-10102-1
42 https://doi.org/10.1371/journal.pcbi.1003847
43 schema:datePublished 2017-07
44 schema:datePublishedReg 2017-07-01
45 schema:description At first glance, the maximum entropy principle (MEP) apparently allows us to derive, or justify in a simple way, fundamental results of equilibrium statistical mechanics. Because of this, a school of thought considers the MEP as a powerful and elegant way to make predictions in physics and other disciplines, rather than a useful technical tool like others in statistical physics. From this point of view the MEP appears as an alternative and more general predictive method than the traditional ones of statistical physics. Actually, careful inspection shows that such a success is due to a series of fortunate facts that characterize the physics of equilibrium systems, but which are absent in situations not described by Hamiltonian dynamics, or generically in nonequilibrium phenomena. Here we discuss several important examples in non equilibrium statistical mechanics, in which the MEP leads to incorrect predictions, proving that it does not have a predictive nature. We conclude that, in these paradigmatic examples, an approach that uses a detailed analysis of the relevant aspects of the dynamics cannot be avoided.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N77b1c65eb5504d5bab1315193921783f
50 Nabf678246000423ba85effc270104d34
51 sg:journal.1297403
52 schema:name On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics
53 schema:pagination 2327-2343
54 schema:productId N34d12e6438c946c8a32f22c230874ac3
55 N7e98f412c016467d863d2cf616fdeb6b
56 N9ad26feda48c470cbf41ae6f2deaa7b0
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084862174
58 https://doi.org/10.1140/epjst/e2017-70064-x
59 schema:sdDatePublished 2019-04-11T10:17
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N004b5e2203ed45e38ea940c49178fc2c
62 schema:url https://link.springer.com/10.1140%2Fepjst%2Fe2017-70064-x
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N004b5e2203ed45e38ea940c49178fc2c schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N34d12e6438c946c8a32f22c230874ac3 schema:name readcube_id
69 schema:value 936da86f84fb8b9ed9d7c07a0d85fdcaae3079b34d5bd079b982a87c93b6fbf2
70 rdf:type schema:PropertyValue
71 N3ad0badc8d0f478fa106e96f6fdfb015 rdf:first sg:person.0717573451.15
72 rdf:rest Nc44b88475bfa416daca85c8636cda2eb
73 N509d1e91a55d408e9c8820d653411775 rdf:first sg:person.01352261626.07
74 rdf:rest rdf:nil
75 N77b1c65eb5504d5bab1315193921783f schema:volumeNumber 226
76 rdf:type schema:PublicationVolume
77 N7e98f412c016467d863d2cf616fdeb6b schema:name dimensions_id
78 schema:value pub.1084862174
79 rdf:type schema:PropertyValue
80 N9ad26feda48c470cbf41ae6f2deaa7b0 schema:name doi
81 schema:value 10.1140/epjst/e2017-70064-x
82 rdf:type schema:PropertyValue
83 Nabf678246000423ba85effc270104d34 schema:issueNumber 10
84 rdf:type schema:PublicationIssue
85 Nc44b88475bfa416daca85c8636cda2eb rdf:first sg:person.01224373551.55
86 rdf:rest N509d1e91a55d408e9c8820d653411775
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1297403 schema:issn 1951-6355
94 1951-6401
95 schema:name The European Physical Journal Special Topics
96 rdf:type schema:Periodical
97 sg:person.01224373551.55 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
98 schema:familyName Rondoni
99 schema:givenName Lamberto
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224373551.55
101 rdf:type schema:Person
102 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
103 schema:familyName Vulpiani
104 schema:givenName Angelo
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
106 rdf:type schema:Person
107 sg:person.0717573451.15 schema:affiliation https://www.grid.ac/institutes/grid.21003.30
108 schema:familyName Auletta
109 schema:givenName Gennaro
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717573451.15
111 rdf:type schema:Person
112 sg:pub.10.1007/978-3-319-06361-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028664748
113 https://doi.org/10.1007/978-3-319-06361-4
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01008275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033470934
116 https://doi.org/10.1007/bf01008275
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s002200050200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031168155
119 https://doi.org/10.1007/s002200050200
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10773-015-2779-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051084225
122 https://doi.org/10.1007/s10773-015-2779-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10955-006-9047-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050191925
125 https://doi.org/10.1007/s10955-006-9047-5
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10955-007-9372-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004438438
128 https://doi.org/10.1007/s10955-007-9372-3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1004604804070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015100810
131 https://doi.org/10.1023/a:1004604804070
132 rdf:type schema:CreativeWork
133 sg:pub.10.1023/a:1014538214117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044308391
134 https://doi.org/10.1023/a:1014538214117
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1024679505651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042801724
137 https://doi.org/10.1023/a:1024679505651
138 rdf:type schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1028664748 schema:CreativeWork
140 https://doi.org/10.1016/0375-9601(92)90268-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1032344904
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/1355-2198(95)00015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010812375
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/1355-2198(95)00022-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003654329
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physa.2007.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022239028
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.physa.2015.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013665323
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physd.2003.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018520508
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.physrep.2008.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042272723
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/cbo9780511599972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098680247
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.881363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126857
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0253-6102/62/4/04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059046964
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0305-4470/36/3/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004478159
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0305-4470/38/21/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079206
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0951-7715/20/10/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025739176
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1742-5468/2013/12/p12003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029138534
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/acprof:oso/9780199608485.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722185
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.108.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419623
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrev.91.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460948
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreva.43.798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483603
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.53.4785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031824392
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.67.046102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003493177
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physreve.71.056120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131883
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.74.021111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762585
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.75.061101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460658
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.89.050601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825119
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/jproc.2014.2306251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297886
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1142/0073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098876827
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1209/epl/i2006-10102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052561063
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pcbi.1003847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026053107
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.21003.30 schema:alternateName University of Cassino and Southern Lazio
199 schema:name University of Cassino, 03043, Cassino, Italy
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.472642.1 schema:alternateName Institute for Complex Systems
202 schema:name CNR, Istituto Sistemi Complessi, P.le A. Moro 2, 00185, Rome, Italy
203 Kavli Institute for Theoretical Physics China, CAS, 100190, Beijing, P.R. China
204 Università di Roma “Sapienza”, Dipartimento di Fisica, Rome, Italy
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
207 schema:name Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
208 INFN, Sezione di Torino, Via Pietro Giuria 1, 10125, Torino, Italy
209 Kavli Institute for Theoretical Physics China, CAS, 100190, Beijing, P.R. China
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...