Exploring first-order phase transitions with population annealing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Lev Yu. Barash, Martin Weigel, Lev N. Shchur, Wolfhard Janke

ABSTRACT

Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition. More... »

PAGES

595-604

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2016-60389-4

DOI

http://dx.doi.org/10.1140/epjst/e2016-60389-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084609013


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Science Center in Chernogolovka, 142432, Chernogolovka, Russia", 
            "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barash", 
        "givenName": "Lev Yu.", 
        "id": "sg:person.015074230256.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074230256.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Coventry University", 
          "id": "https://www.grid.ac/institutes/grid.8096.7", 
          "name": [
            "Applied Mathematics Research Centre, Coventry University, CV1 5FB, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigel", 
        "givenName": "Martin", 
        "id": "sg:person.01241305301.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241305301.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Science Center in Chernogolovka, 142432, Chernogolovka, Russia", 
            "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia", 
            "National Research University Higher School of Economics, 101000, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchur", 
        "givenName": "Lev N.", 
        "id": "sg:person.0644514541.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Leipzig, Postfach 100 920, D-04009, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janke", 
        "givenName": "Wolfhard", 
        "id": "sg:person.014616523315.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616523315.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00440-011-0353-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012563661", 
          "https://doi.org/10.1007/s00440-011-0353-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(02)00205-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016501111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.69.034501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024436828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.69.034501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024436828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1527/tjsai.16.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026439292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-016-2759-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026869045", 
          "https://doi.org/10.1007/s00220-016-2759-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-016-2759-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026869045", 
          "https://doi.org/10.1007/s00220-016-2759-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-011-0249-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034788493", 
          "https://doi.org/10.1007/s10955-011-0249-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.013303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040724562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.013303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040724562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042417465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042417465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.184412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.184412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/50/7/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048120455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.026704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049126900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.026704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049126900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049435006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049435006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjconf/201610802016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056965423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1992261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056973861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/6/23/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058966813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.094410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.094410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.063307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.063307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.54.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.54.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2008.917757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2016-60389-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "226"
      }
    ], 
    "name": "Exploring first-order phase transitions with population annealing", 
    "pagination": "595-604", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22b2632adfe07373d47c431b9cc03e46ca0445847633b6ae1b1bc363ddb0a63a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2016-60389-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084609013"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2016-60389-4", 
      "https://app.dimensions.ai/details/publication/pub.1084609013"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99833_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjst%2Fe2016-60389-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-60389-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-60389-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-60389-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-60389-4'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2016-60389-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3c0296e6a6834d5685a2bd2f373460d2
4 schema:citation sg:pub.10.1007/s00220-016-2759-8
5 sg:pub.10.1007/s00440-011-0353-8
6 sg:pub.10.1007/s10955-011-0249-0
7 https://doi.org/10.1016/s0010-4655(02)00205-9
8 https://doi.org/10.1051/epjconf/201610802016
9 https://doi.org/10.1051/jp1:1992261
10 https://doi.org/10.1088/0022-3719/6/23/005
11 https://doi.org/10.1088/0034-4885/50/7/001
12 https://doi.org/10.1103/physrevb.90.184412
13 https://doi.org/10.1103/physrevb.92.094410
14 https://doi.org/10.1103/physrevd.69.034501
15 https://doi.org/10.1103/physreve.82.026704
16 https://doi.org/10.1103/physreve.92.013303
17 https://doi.org/10.1103/physreve.92.063307
18 https://doi.org/10.1103/physrevlett.68.9
19 https://doi.org/10.1103/physrevlett.86.2050
20 https://doi.org/10.1103/revmodphys.54.235
21 https://doi.org/10.1109/jproc.2008.917757
22 https://doi.org/10.1527/tjsai.16.279
23 schema:datePublished 2017-04
24 schema:datePublishedReg 2017-04-01
25 schema:description Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N0968dc400f204742b318174ff2bd9318
30 N5d720a79f25742c0a0c27e646310cb4c
31 sg:journal.1297403
32 schema:name Exploring first-order phase transitions with population annealing
33 schema:pagination 595-604
34 schema:productId N0a7cc38f07524010bcaa17c4612c840d
35 N4139447232954847b0cec11abb246528
36 N4d9a1659fc7d474b81330c1252dfce77
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084609013
38 https://doi.org/10.1140/epjst/e2016-60389-4
39 schema:sdDatePublished 2019-04-11T09:39
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N26316b43e3d440a68aa7c50033b98282
42 schema:url https://link.springer.com/10.1140%2Fepjst%2Fe2016-60389-4
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0968dc400f204742b318174ff2bd9318 schema:issueNumber 4
47 rdf:type schema:PublicationIssue
48 N0a7cc38f07524010bcaa17c4612c840d schema:name dimensions_id
49 schema:value pub.1084609013
50 rdf:type schema:PropertyValue
51 N26316b43e3d440a68aa7c50033b98282 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N3c0296e6a6834d5685a2bd2f373460d2 rdf:first sg:person.015074230256.27
54 rdf:rest N9e7db39ab86248798d2fd80d878284dd
55 N4139447232954847b0cec11abb246528 schema:name readcube_id
56 schema:value 22b2632adfe07373d47c431b9cc03e46ca0445847633b6ae1b1bc363ddb0a63a
57 rdf:type schema:PropertyValue
58 N478c730aded54b529b279ff14e87e4cd schema:name Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009, Leipzig, Germany
59 rdf:type schema:Organization
60 N4d9a1659fc7d474b81330c1252dfce77 schema:name doi
61 schema:value 10.1140/epjst/e2016-60389-4
62 rdf:type schema:PropertyValue
63 N5d720a79f25742c0a0c27e646310cb4c schema:volumeNumber 226
64 rdf:type schema:PublicationVolume
65 N81c185f2ebea4bd0b4d1836fc7eb0892 rdf:first sg:person.0644514541.83
66 rdf:rest Nfd98c0e0212c44039e37b95079dc7750
67 N9e7db39ab86248798d2fd80d878284dd rdf:first sg:person.01241305301.23
68 rdf:rest N81c185f2ebea4bd0b4d1836fc7eb0892
69 Nfd98c0e0212c44039e37b95079dc7750 rdf:first sg:person.014616523315.94
70 rdf:rest rdf:nil
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1297403 schema:issn 1951-6355
78 1951-6401
79 schema:name The European Physical Journal Special Topics
80 rdf:type schema:Periodical
81 sg:person.01241305301.23 schema:affiliation https://www.grid.ac/institutes/grid.8096.7
82 schema:familyName Weigel
83 schema:givenName Martin
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241305301.23
85 rdf:type schema:Person
86 sg:person.014616523315.94 schema:affiliation N478c730aded54b529b279ff14e87e4cd
87 schema:familyName Janke
88 schema:givenName Wolfhard
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616523315.94
90 rdf:type schema:Person
91 sg:person.015074230256.27 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
92 schema:familyName Barash
93 schema:givenName Lev Yu.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074230256.27
95 rdf:type schema:Person
96 sg:person.0644514541.83 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
97 schema:familyName Shchur
98 schema:givenName Lev N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83
100 rdf:type schema:Person
101 sg:pub.10.1007/s00220-016-2759-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026869045
102 https://doi.org/10.1007/s00220-016-2759-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00440-011-0353-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012563661
105 https://doi.org/10.1007/s00440-011-0353-8
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10955-011-0249-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034788493
108 https://doi.org/10.1007/s10955-011-0249-0
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0010-4655(02)00205-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016501111
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1051/epjconf/201610802016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056965423
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1051/jp1:1992261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973861
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0022-3719/6/23/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966813
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0034-4885/50/7/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048120455
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.90.184412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450496
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.92.094410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646955
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevd.69.034501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024436828
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreve.82.026704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049126900
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreve.92.013303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040724562
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreve.92.063307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060748814
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.68.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042417465
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.86.2050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049435006
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/revmodphys.54.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839004
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/jproc.2008.917757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296953
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1527/tjsai.16.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026439292
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
143 schema:name Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia
144 National Research University Higher School of Economics, 101000, Moscow, Russia
145 Science Center in Chernogolovka, 142432, Chernogolovka, Russia
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
148 schema:name Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia
149 Science Center in Chernogolovka, 142432, Chernogolovka, Russia
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.8096.7 schema:alternateName Coventry University
152 schema:name Applied Mathematics Research Centre, Coventry University, CV1 5FB, Coventry, UK
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...