Probing the statistics of transport in the Hénon Map View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

O. Alus, S. Fishman, J.D. Meiss

ABSTRACT

The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant “boundary circles.” We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space. More... »

PAGES

1181-1186

References to SciGraph publications

  • 1985-05. Algebraic decay in self-similar Markov chains in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjst/e2016-02663-2

    DOI

    http://dx.doi.org/10.1140/epjst/e2016-02663-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051748054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Physics Department, Technion-Israel Institute of Technology, 3200, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alus", 
            "givenName": "O.", 
            "id": "sg:person.01323155366.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323155366.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Physics Department, Technion-Israel Institute of Technology, 3200, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fishman", 
            "givenName": "S.", 
            "id": "sg:person.0725700421.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725700421.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado Boulder", 
              "id": "https://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Applied Mathematics, University of Colorado, Boulder, 80309-0526, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meiss", 
            "givenName": "J.D.", 
            "id": "sg:person.0643670514.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreve.90.062923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003647494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.90.062923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003647494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(86)90041-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007498722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(86)90041-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007498722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.042904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.92.042904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90232-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020056379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90232-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020056379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90270-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022128735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90270-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022128735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.064101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031401615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.064101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031401615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033528037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(84)90140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033528037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.184101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035342206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.184101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035342206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01018666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045723712", 
              "https://doi.org/10.1007/bf01018666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(86)90005-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049170353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(86)90005-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049170353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(94)90197-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049663768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(94)90197-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049663768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.87.012918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051134569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.87.012918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051134569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.166252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057740853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.166481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057742862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/30/23/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059075727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/253513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059348313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.34.2375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.34.2375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.64.795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.64.795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839265"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09", 
        "datePublishedReg": "2016-09-01", 
        "description": "The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant \u201cboundary circles.\u201d We briefly report recent results of the distribution of rotation numbers of boundary circles for the H\u00e9non quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjst/e2016-02663-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297403", 
            "issn": [
              "1951-6355", 
              "1951-6401"
            ], 
            "name": "The European Physical Journal Special Topics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6-7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "225"
          }
        ], 
        "name": "Probing the statistics of transport in the H\u00e9non Map", 
        "pagination": "1181-1186", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f680045f1f4d11a3155c7efdf3cbf0516bbb41d2476fc1664659d8ca5243102a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjst/e2016-02663-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051748054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjst/e2016-02663-2", 
          "https://app.dimensions.ai/details/publication/pub.1051748054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1140%2Fepjst%2Fe2016-02663-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-02663-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-02663-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-02663-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2016-02663-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjst/e2016-02663-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd58525f48d114f51aa485c8e01f2f35e
    4 schema:citation sg:pub.10.1007/bf01018666
    5 https://doi.org/10.1016/0167-2789(83)90232-4
    6 https://doi.org/10.1016/0167-2789(84)90140-4
    7 https://doi.org/10.1016/0167-2789(84)90270-7
    8 https://doi.org/10.1016/0167-2789(86)90005-9
    9 https://doi.org/10.1016/0167-2789(86)90041-2
    10 https://doi.org/10.1016/0167-2789(94)90197-x
    11 https://doi.org/10.1063/1.166252
    12 https://doi.org/10.1063/1.166481
    13 https://doi.org/10.1088/0305-4470/30/23/016
    14 https://doi.org/10.1090/qam/253513
    15 https://doi.org/10.1103/physreva.34.2375
    16 https://doi.org/10.1103/physreve.87.012918
    17 https://doi.org/10.1103/physreve.90.062923
    18 https://doi.org/10.1103/physreve.92.042904
    19 https://doi.org/10.1103/physrevlett.100.184101
    20 https://doi.org/10.1103/physrevlett.102.064101
    21 https://doi.org/10.1103/revmodphys.64.795
    22 schema:datePublished 2016-09
    23 schema:datePublishedReg 2016-09-01
    24 schema:description The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant “boundary circles.” We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf Ncd99407f78fe46db806383473ef48865
    29 Nfb3364965b234997a515ba8a450d87b9
    30 sg:journal.1297403
    31 schema:name Probing the statistics of transport in the Hénon Map
    32 schema:pagination 1181-1186
    33 schema:productId N37887078aa83449190e79c2d45a12f00
    34 Naaed480b09ee4b588d1321feeb50d843
    35 Neca73989f3904499886acb4a64bdeb06
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051748054
    37 https://doi.org/10.1140/epjst/e2016-02663-2
    38 schema:sdDatePublished 2019-04-11T12:36
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Ne1003a3a024e4b9abbaef884d96c8ba9
    41 schema:url https://link.springer.com/10.1140%2Fepjst%2Fe2016-02663-2
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N37887078aa83449190e79c2d45a12f00 schema:name dimensions_id
    46 schema:value pub.1051748054
    47 rdf:type schema:PropertyValue
    48 N4ae043d4c6424fd691059688d64d33b0 rdf:first sg:person.0643670514.20
    49 rdf:rest rdf:nil
    50 N9bb228a7eced4ae0b36889a9d23665f5 rdf:first sg:person.0725700421.22
    51 rdf:rest N4ae043d4c6424fd691059688d64d33b0
    52 Naaed480b09ee4b588d1321feeb50d843 schema:name doi
    53 schema:value 10.1140/epjst/e2016-02663-2
    54 rdf:type schema:PropertyValue
    55 Ncd99407f78fe46db806383473ef48865 schema:issueNumber 6-7
    56 rdf:type schema:PublicationIssue
    57 Nd58525f48d114f51aa485c8e01f2f35e rdf:first sg:person.01323155366.53
    58 rdf:rest N9bb228a7eced4ae0b36889a9d23665f5
    59 Ne1003a3a024e4b9abbaef884d96c8ba9 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Neca73989f3904499886acb4a64bdeb06 schema:name readcube_id
    62 schema:value f680045f1f4d11a3155c7efdf3cbf0516bbb41d2476fc1664659d8ca5243102a
    63 rdf:type schema:PropertyValue
    64 Nfb3364965b234997a515ba8a450d87b9 schema:volumeNumber 225
    65 rdf:type schema:PublicationVolume
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1297403 schema:issn 1951-6355
    73 1951-6401
    74 schema:name The European Physical Journal Special Topics
    75 rdf:type schema:Periodical
    76 sg:person.01323155366.53 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    77 schema:familyName Alus
    78 schema:givenName O.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323155366.53
    80 rdf:type schema:Person
    81 sg:person.0643670514.20 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
    82 schema:familyName Meiss
    83 schema:givenName J.D.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20
    85 rdf:type schema:Person
    86 sg:person.0725700421.22 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    87 schema:familyName Fishman
    88 schema:givenName S.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725700421.22
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf01018666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723712
    92 https://doi.org/10.1007/bf01018666
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0167-2789(83)90232-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020056379
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/0167-2789(84)90140-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033528037
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0167-2789(84)90270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128735
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0167-2789(86)90005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049170353
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0167-2789(86)90041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007498722
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0167-2789(94)90197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049663768
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1063/1.166252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740853
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1063/1.166481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742862
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1088/0305-4470/30/23/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059075727
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physreva.34.2375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474990
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physreve.87.012918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134569
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physreve.90.062923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003647494
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physreve.92.042904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724626
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevlett.100.184101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035342206
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physrevlett.102.064101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031401615
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/revmodphys.64.795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839265
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
    129 schema:name Department of Applied Mathematics, University of Colorado, Boulder, 80309-0526, Colorado, USA
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
    132 schema:name Physics Department, Technion-Israel Institute of Technology, 3200, Haifa, Israel
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...