Novel types of quantum criticality in heavy-fermion systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-07-22

AUTHORS

P. Gegenwart, F. Steglich, C. Geibel, M. Brando

ABSTRACT

Quantum criticality arises from continuous changes of matter at absolute zero temperature. It can have vast reaching influence on wide regions of phase space and is often connected to the occurrence of non-Fermi liquid behavior and unconventional superconductivity. Various different types of quantum criticality have been observed over the last years and 4f-electron based heavy-fermion metals have become prototype materials in which quantum criticality is easily realized by application of pressure or magnetic field, as well as suitable changes in chemical composition. Using low-temperature thermodynamic, magnetic and transport experiments on clean prototype materials we investigate novel types of quantum criticality arising from ferromagnetic fluctuations and strong geometrical frustration, as well as quantum criticality hidden by unconventional superconductivity. More... »

PAGES

975-996

References to SciGraph publications

  • 2014-03-21. Quantum criticality in a metallic spin liquid in NATURE MATERIALS
  • 1925-02. Beitrag zur Theorie des Ferromagnetismus in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1985. Spin Fluctuations in Itinerant Electron Magnetism in NONE
  • 2001-10. Locally critical quantum phase transitions in strongly correlated metals in NATURE
  • 2000-09. Onset of antiferromagnetism in heavy-fermion metals in NATURE
  • 2010-12-12. Magnetically driven superconductivity in CeCu2Si2 in NATURE PHYSICS
  • 2003-07. The break-up of heavy electrons at a quantum critical point in NATURE
  • 2012-04-25. Thermal and electrical transport across a magnetic quantum critical point in NATURE
  • 2001-11. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets in NATURE
  • 2008-03-03. Quantum criticality in heavy-fermion metals in NATURE PHYSICS
  • 2004-12. Hall-effect evolution across a heavy-fermion quantum critical point in NATURE
  • 2009-12-09. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order in NATURE
  • 2012-01-10. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 in NATURE MATERIALS
  • 2013-06-17. Quantum fluctuations in spin-ice-like Pr2Zr2O7 in NATURE COMMUNICATIONS
  • 2009-05-31. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 in NATURE PHYSICS
  • 2010-03-10. Spin liquids in frustrated magnets in NATURE
  • 2010-09-03. Frustration and the Kondo Effect in Heavy Fermion Materials in JOURNAL OF LOW TEMPERATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjst/e2015-02442-7

    DOI

    http://dx.doi.org/10.1140/epjst/e2015-02442-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012881603


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Augsburg University, 86159, Augsburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Augsburg University, 86159, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gegenwart", 
            "givenName": "P.", 
            "id": "sg:person.0734165233.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steglich", 
            "givenName": "F.", 
            "id": "sg:person.01061214726.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geibel", 
            "givenName": "C.", 
            "id": "sg:person.0626226403.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626226403.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max-Planck-Institut f\u00fcr Chemische Physik Fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brando", 
            "givenName": "M.", 
            "id": "sg:person.01351632503.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351632503.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02980577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027226374", 
              "https://doi.org/10.1007/bf02980577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043296466", 
              "https://doi.org/10.1038/nphys892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048617608", 
              "https://doi.org/10.1038/nphys1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010104937", 
              "https://doi.org/10.1038/nature11072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005740509", 
              "https://doi.org/10.1038/nature03129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35106527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039062421", 
              "https://doi.org/10.1038/35106527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006946016", 
              "https://doi.org/10.1038/nature08680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35101507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025237678", 
              "https://doi.org/10.1038/35101507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-82499-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033001114", 
              "https://doi.org/10.1007/978-3-642-82499-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35030039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028000164", 
              "https://doi.org/10.1038/35030039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048572357", 
              "https://doi.org/10.1038/nmat3214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-010-0213-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023019324", 
              "https://doi.org/10.1007/s10909-010-0213-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011536224", 
              "https://doi.org/10.1038/nmat3900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027454082", 
              "https://doi.org/10.1038/nature01774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037124781", 
              "https://doi.org/10.1038/ncomms2914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042830450", 
              "https://doi.org/10.1038/nature08917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006495339", 
              "https://doi.org/10.1038/nphys1852"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07-22", 
        "datePublishedReg": "2015-07-22", 
        "description": "Abstract\nQuantum criticality arises from continuous changes of matter at absolute zero temperature. It can have vast reaching influence on wide regions of phase space and is often connected to the occurrence of non-Fermi liquid behavior and unconventional superconductivity. Various different types of quantum criticality have been observed over the last years and 4f-electron based heavy-fermion metals have become prototype materials in which quantum criticality is easily realized by application of pressure or magnetic field, as well as suitable changes in chemical composition. Using low-temperature thermodynamic, magnetic and transport experiments on clean prototype materials we investigate novel types of quantum criticality arising from ferromagnetic fluctuations and strong geometrical frustration, as well as quantum criticality hidden by unconventional superconductivity.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjst/e2015-02442-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297403", 
            "issn": [
              "1155-4339", 
              "1764-7177"
            ], 
            "name": "The European Physical Journal Special Topics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "224"
          }
        ], 
        "keywords": [
          "quantum criticality", 
          "unconventional superconductivity", 
          "non-Fermi liquid behavior", 
          "heavy-fermion metals", 
          "heavy fermion systems", 
          "prototype material", 
          "low-temperature thermodynamics", 
          "strong geometrical frustration", 
          "ferromagnetic fluctuations", 
          "liquid behavior", 
          "magnetic field", 
          "geometrical frustration", 
          "phase space", 
          "application of pressure", 
          "transport experiments", 
          "superconductivity", 
          "wide region", 
          "novel type", 
          "criticality", 
          "chemical composition", 
          "fluctuations", 
          "field", 
          "thermodynamics", 
          "materials", 
          "temperature", 
          "matter", 
          "continuous change", 
          "experiments", 
          "metals", 
          "frustration", 
          "region", 
          "space", 
          "applications", 
          "suitable change", 
          "composition", 
          "pressure", 
          "system", 
          "last years", 
          "behavior", 
          "different types", 
          "influence", 
          "types", 
          "changes", 
          "occurrence", 
          "years"
        ], 
        "name": "Novel types of quantum criticality in heavy-fermion systems", 
        "pagination": "975-996", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012881603"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjst/e2015-02442-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjst/e2015-02442-7", 
          "https://app.dimensions.ai/details/publication/pub.1012881603"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_679.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjst/e2015-02442-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2015-02442-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2015-02442-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2015-02442-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2015-02442-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      87 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjst/e2015-02442-7 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 anzsrc-for:0206
    4 schema:author N19c359708c044c7bb5e944a04e2d38f5
    5 schema:citation sg:pub.10.1007/978-3-642-82499-9
    6 sg:pub.10.1007/bf02980577
    7 sg:pub.10.1007/s10909-010-0213-4
    8 sg:pub.10.1038/35030039
    9 sg:pub.10.1038/35101507
    10 sg:pub.10.1038/35106527
    11 sg:pub.10.1038/nature01774
    12 sg:pub.10.1038/nature03129
    13 sg:pub.10.1038/nature08680
    14 sg:pub.10.1038/nature08917
    15 sg:pub.10.1038/nature11072
    16 sg:pub.10.1038/ncomms2914
    17 sg:pub.10.1038/nmat3214
    18 sg:pub.10.1038/nmat3900
    19 sg:pub.10.1038/nphys1299
    20 sg:pub.10.1038/nphys1852
    21 sg:pub.10.1038/nphys892
    22 schema:datePublished 2015-07-22
    23 schema:datePublishedReg 2015-07-22
    24 schema:description Abstract Quantum criticality arises from continuous changes of matter at absolute zero temperature. It can have vast reaching influence on wide regions of phase space and is often connected to the occurrence of non-Fermi liquid behavior and unconventional superconductivity. Various different types of quantum criticality have been observed over the last years and 4f-electron based heavy-fermion metals have become prototype materials in which quantum criticality is easily realized by application of pressure or magnetic field, as well as suitable changes in chemical composition. Using low-temperature thermodynamic, magnetic and transport experiments on clean prototype materials we investigate novel types of quantum criticality arising from ferromagnetic fluctuations and strong geometrical frustration, as well as quantum criticality hidden by unconventional superconductivity.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N2a13f72cffd34c16aabd19ba0f1ec303
    28 Na8746961c29444228b694d608e751338
    29 sg:journal.1297403
    30 schema:keywords application of pressure
    31 applications
    32 behavior
    33 changes
    34 chemical composition
    35 composition
    36 continuous change
    37 criticality
    38 different types
    39 experiments
    40 ferromagnetic fluctuations
    41 field
    42 fluctuations
    43 frustration
    44 geometrical frustration
    45 heavy fermion systems
    46 heavy-fermion metals
    47 influence
    48 last years
    49 liquid behavior
    50 low-temperature thermodynamics
    51 magnetic field
    52 materials
    53 matter
    54 metals
    55 non-Fermi liquid behavior
    56 novel type
    57 occurrence
    58 phase space
    59 pressure
    60 prototype material
    61 quantum criticality
    62 region
    63 space
    64 strong geometrical frustration
    65 suitable change
    66 superconductivity
    67 system
    68 temperature
    69 thermodynamics
    70 transport experiments
    71 types
    72 unconventional superconductivity
    73 wide region
    74 years
    75 schema:name Novel types of quantum criticality in heavy-fermion systems
    76 schema:pagination 975-996
    77 schema:productId N4e84c2bb3be940cf869d590dc4d340e0
    78 N541ab32d131c46f8a984f3bad37c7d67
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881603
    80 https://doi.org/10.1140/epjst/e2015-02442-7
    81 schema:sdDatePublished 2022-09-02T15:59
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N52bdf70df3344302a5579a2e5088b7ff
    84 schema:url https://doi.org/10.1140/epjst/e2015-02442-7
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N19c359708c044c7bb5e944a04e2d38f5 rdf:first sg:person.0734165233.79
    89 rdf:rest Ncb3ddc158df145cb8e758387f27753c8
    90 N2a13f72cffd34c16aabd19ba0f1ec303 schema:issueNumber 6
    91 rdf:type schema:PublicationIssue
    92 N4392b829ad8c4c1aaaf7180dacd0fc2b rdf:first sg:person.01351632503.98
    93 rdf:rest rdf:nil
    94 N4e84c2bb3be940cf869d590dc4d340e0 schema:name doi
    95 schema:value 10.1140/epjst/e2015-02442-7
    96 rdf:type schema:PropertyValue
    97 N52bdf70df3344302a5579a2e5088b7ff schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N541ab32d131c46f8a984f3bad37c7d67 schema:name dimensions_id
    100 schema:value pub.1012881603
    101 rdf:type schema:PropertyValue
    102 Na8746961c29444228b694d608e751338 schema:volumeNumber 224
    103 rdf:type schema:PublicationVolume
    104 Ncb3ddc158df145cb8e758387f27753c8 rdf:first sg:person.01061214726.76
    105 rdf:rest Nea8d7f203ac84d5a80764efb9918773f
    106 Nea8d7f203ac84d5a80764efb9918773f rdf:first sg:person.0626226403.97
    107 rdf:rest N4392b829ad8c4c1aaaf7180dacd0fc2b
    108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Physical Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Quantum Physics
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1297403 schema:issn 1155-4339
    118 1764-7177
    119 schema:name The European Physical Journal Special Topics
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
    123 schema:familyName Steglich
    124 schema:givenName F.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
    126 rdf:type schema:Person
    127 sg:person.01351632503.98 schema:affiliation grid-institutes:grid.419507.e
    128 schema:familyName Brando
    129 schema:givenName M.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351632503.98
    131 rdf:type schema:Person
    132 sg:person.0626226403.97 schema:affiliation grid-institutes:grid.419507.e
    133 schema:familyName Geibel
    134 schema:givenName C.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626226403.97
    136 rdf:type schema:Person
    137 sg:person.0734165233.79 schema:affiliation grid-institutes:grid.7307.3
    138 schema:familyName Gegenwart
    139 schema:givenName P.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79
    141 rdf:type schema:Person
    142 sg:pub.10.1007/978-3-642-82499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001114
    143 https://doi.org/10.1007/978-3-642-82499-9
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02980577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027226374
    146 https://doi.org/10.1007/bf02980577
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10909-010-0213-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023019324
    149 https://doi.org/10.1007/s10909-010-0213-4
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/35030039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028000164
    152 https://doi.org/10.1038/35030039
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/35101507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237678
    155 https://doi.org/10.1038/35101507
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/35106527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062421
    158 https://doi.org/10.1038/35106527
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nature01774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027454082
    161 https://doi.org/10.1038/nature01774
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nature03129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740509
    164 https://doi.org/10.1038/nature03129
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nature08680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006946016
    167 https://doi.org/10.1038/nature08680
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature08917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830450
    170 https://doi.org/10.1038/nature08917
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature11072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104937
    173 https://doi.org/10.1038/nature11072
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/ncomms2914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037124781
    176 https://doi.org/10.1038/ncomms2914
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nmat3214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048572357
    179 https://doi.org/10.1038/nmat3214
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmat3900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536224
    182 https://doi.org/10.1038/nmat3900
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nphys1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617608
    185 https://doi.org/10.1038/nphys1299
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nphys1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495339
    188 https://doi.org/10.1038/nphys1852
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nphys892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296466
    191 https://doi.org/10.1038/nphys892
    192 rdf:type schema:CreativeWork
    193 grid-institutes:grid.419507.e schema:alternateName Max-Planck-Institut für Chemische Physik Fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany
    194 schema:name Max-Planck-Institut für Chemische Physik Fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany
    195 rdf:type schema:Organization
    196 grid-institutes:grid.7307.3 schema:alternateName Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Augsburg University, 86159, Augsburg, Germany
    197 schema:name Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Augsburg University, 86159, Augsburg, Germany
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...