Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07

AUTHORS

Y. I. Latyshev, A. P. Orlov, P. Monceau, D. Vignolles, S. S. Pershoguba, V. M. Yakovenko

ABSTRACT

Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field H up to 55 T and low temperature T = 1.4 K. The tunneling spectrum dI/dV vs. V has a pronounced peak at a finite voltage V0. The peak position V0 increases linearly with H. To explain the experiment, we develop a theoretical model of graphite in the crossed electric E and magnetic H fields. When the fields satisfy the resonant condition E = vH, where V is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment. More... »

PAGES

1257-1262

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2013-01919-7

DOI

http://dx.doi.org/10.1140/epjst/e2013-01919-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1062896040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Latyshev", 
        "givenName": "Y. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlov", 
        "givenName": "A. P.", 
        "id": "sg:person.01240063521.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240063521.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS, 25 rue des Martyrs, BP. 166, 38042, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monceau", 
        "givenName": "P.", 
        "id": "sg:person.01317035213.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035213.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses\u2013Toulouse, CNRS, 143 avenue de Rangueil, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolles", 
        "givenName": "D.", 
        "id": "sg:person.015624012501.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, 20742-4111, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pershoguba", 
        "givenName": "S. S.", 
        "id": "sg:person.0737000166.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737000166.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, 20742-4111, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovenko", 
        "givenName": "V. M.", 
        "id": "sg:person.0665344237.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665344237.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl3002205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364006140104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003686391", 
          "https://doi.org/10.1134/s0021364006140104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364008080092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007226048", 
          "https://doi.org/10.1134/s0021364008080092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007257359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.245428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020891172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.245428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020891172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030279915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030279915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2006.03.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040916664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2012.01.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042667435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2006.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047286763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.205408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052758637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.205408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052758637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053508639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053508639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field H up to 55 T and low temperature T = 1.4 K. The tunneling spectrum dI/dV vs. V has a pronounced peak at a finite voltage V0. The peak position V0 increases linearly with H. To explain the experiment, we develop a theoretical model of graphite in the crossed electric E and magnetic H fields. When the fields satisfy the resonant condition E = vH, where V is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2013-01919-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "222"
      }
    ], 
    "name": "Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers", 
    "pagination": "1257-1262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5be8ab4ea943ecc1761197f3b20e14480016331a344e96c42ee2523d232dea73"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2013-01919-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1062896040"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2013-01919-7", 
      "https://app.dimensions.ai/details/publication/pub.1062896040"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjst%2Fe2013-01919-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01919-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01919-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01919-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01919-7'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2013-01919-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1e9fa251296345f4b9350b8a20d1f686
4 schema:citation sg:pub.10.1134/s0021364006140104
5 sg:pub.10.1134/s0021364008080092
6 https://doi.org/10.1002/adma.201103530
7 https://doi.org/10.1016/j.physb.2012.01.055
8 https://doi.org/10.1016/j.physe.2006.03.014
9 https://doi.org/10.1016/j.physe.2006.03.109
10 https://doi.org/10.1021/nl3002205
11 https://doi.org/10.1103/physrevb.82.205408
12 https://doi.org/10.1103/physrevb.83.245428
13 https://doi.org/10.1103/physrevb.86.165404
14 https://doi.org/10.1103/physrevlett.86.2657
15 https://doi.org/10.1103/physrevlett.95.266402
16 schema:datePublished 2013-07
17 schema:datePublishedReg 2013-07-01
18 schema:description Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field H up to 55 T and low temperature T = 1.4 K. The tunneling spectrum dI/dV vs. V has a pronounced peak at a finite voltage V0. The peak position V0 increases linearly with H. To explain the experiment, we develop a theoretical model of graphite in the crossed electric E and magnetic H fields. When the fields satisfy the resonant condition E = vH, where V is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N32f12dcf82a448abb568c3478a53cebb
23 Naf2c40e89c33461b95c41da34ea2a2bb
24 sg:journal.1297403
25 schema:name Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers
26 schema:pagination 1257-1262
27 schema:productId N686dfe236fc9483893873a40bacda57a
28 N8fc44ae23a3c4c9db03a562741079004
29 Nd8af7f2d593a40a79a8c2757bebd72b8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062896040
31 https://doi.org/10.1140/epjst/e2013-01919-7
32 schema:sdDatePublished 2019-04-10T14:15
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nc94dadd53b2f421c841586cc8711741a
35 schema:url http://link.springer.com/10.1140%2Fepjst%2Fe2013-01919-7
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0079bc1ab4fc40bcbca6008c68c0428b schema:affiliation https://www.grid.ac/institutes/grid.4886.2
40 schema:familyName Latyshev
41 schema:givenName Y. I.
42 rdf:type schema:Person
43 N05fee1e21ca54efe8e68ba108bd86a10 rdf:first sg:person.01317035213.95
44 rdf:rest N5993e656ee664a9696901257ec6913ec
45 N1e9fa251296345f4b9350b8a20d1f686 rdf:first N0079bc1ab4fc40bcbca6008c68c0428b
46 rdf:rest N2677e266cf66481dbb54ee905bf126da
47 N2677e266cf66481dbb54ee905bf126da rdf:first sg:person.01240063521.42
48 rdf:rest N05fee1e21ca54efe8e68ba108bd86a10
49 N32f12dcf82a448abb568c3478a53cebb schema:volumeNumber 222
50 rdf:type schema:PublicationVolume
51 N5993e656ee664a9696901257ec6913ec rdf:first sg:person.015624012501.69
52 rdf:rest N6c72f2a218724b70919267dcd8815ec7
53 N686dfe236fc9483893873a40bacda57a schema:name dimensions_id
54 schema:value pub.1062896040
55 rdf:type schema:PropertyValue
56 N6c72f2a218724b70919267dcd8815ec7 rdf:first sg:person.0737000166.46
57 rdf:rest N8a8e6fb162be4f0f815540ac59213b03
58 N8a8e6fb162be4f0f815540ac59213b03 rdf:first sg:person.0665344237.36
59 rdf:rest rdf:nil
60 N8fc44ae23a3c4c9db03a562741079004 schema:name doi
61 schema:value 10.1140/epjst/e2013-01919-7
62 rdf:type schema:PropertyValue
63 Naf2c40e89c33461b95c41da34ea2a2bb schema:issueNumber 5
64 rdf:type schema:PublicationIssue
65 Nc94dadd53b2f421c841586cc8711741a schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nd8af7f2d593a40a79a8c2757bebd72b8 schema:name readcube_id
68 schema:value 5be8ab4ea943ecc1761197f3b20e14480016331a344e96c42ee2523d232dea73
69 rdf:type schema:PropertyValue
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1297403 schema:issn 1951-6355
77 1951-6401
78 schema:name The European Physical Journal Special Topics
79 rdf:type schema:Periodical
80 sg:person.01240063521.42 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Orlov
82 schema:givenName A. P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240063521.42
84 rdf:type schema:Person
85 sg:person.01317035213.95 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
86 schema:familyName Monceau
87 schema:givenName P.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035213.95
89 rdf:type schema:Person
90 sg:person.015624012501.69 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
91 schema:familyName Vignolles
92 schema:givenName D.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69
94 rdf:type schema:Person
95 sg:person.0665344237.36 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
96 schema:familyName Yakovenko
97 schema:givenName V. M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665344237.36
99 rdf:type schema:Person
100 sg:person.0737000166.46 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
101 schema:familyName Pershoguba
102 schema:givenName S. S.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737000166.46
104 rdf:type schema:Person
105 sg:pub.10.1134/s0021364006140104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003686391
106 https://doi.org/10.1134/s0021364006140104
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0021364008080092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007226048
109 https://doi.org/10.1134/s0021364008080092
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/adma.201103530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007257359
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.physb.2012.01.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042667435
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.physe.2006.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047286763
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.physe.2006.03.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040916664
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/nl3002205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874697
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.82.205408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052758637
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.83.245428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020891172
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.86.165404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053508639
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.86.2657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030279915
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.95.266402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831420
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
132 schema:name Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, 20742-4111, Maryland, USA
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
135 schema:name Laboratoire National des Champs Magnétiques Intenses–Toulouse, CNRS, 143 avenue de Rangueil, 31400, Toulouse, France
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.450308.a schema:alternateName Institut Néel
138 schema:name Institut Néel, CNRS, 25 rue des Martyrs, BP. 166, 38042, Grenoble, France
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
141 schema:name Kotelnikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009, Moscow, Russia
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...