Quantifying heart rate dynamics using different approaches of symbolic dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

D. Cysarz, A. Porta, N. Montano, P.V. Leeuwen, J. Kurths, N. Wessel

ABSTRACT

The analysis of symbolic dynamics applied to physiological time series is able to retrieve information about dynamical properties of the underlying system that cannot be gained with standard methods like e.g. spectral analysis. Different approaches for the transformation of the original time series to the symbolic time series have been proposed. Yet the differences between the approaches are unknown. In this study three different transformation methods are investigated: (1) symbolization according to the deviation from the average time series, (2) symbolization according to several equidistant levels between the minimum and maximum of the time series, (3) binary symbolization of the first derivative of the time series. Furthermore, permutation entropy was used to quantify the symbolic series. Each method was applied to the cardiac interbeat interval series RRi and its difference ΔRRI of 17 healthy subjects obtained during head-up tilt testing. The symbolic dynamics of each method is analyzed by means of the occurrence of short sequences (“words”) of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), words with one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis showed that for method 1 0V%, 1V%, 2LV% and 2UV% changed with increasing tilt angle. For method 2 0V%, 2LV% and 2UV% changed with increasing tilt angle and method 3 showed changes for 0V% and 1V%. Furthermore, also the permutation entropy decreased with increasing tilt angle. In conclusion, all methods are capable of reflecting changes of the cardiac autonomic nervous system during head-up tilt. All methods show that even the analysis of very short symbolic sequences is capable of tracking changes of the cardiac autonomic regulation during head-up tilt testing. More... »

PAGES

487-500

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2013-01854-7

DOI

http://dx.doi.org/10.1140/epjst/e2013-01854-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050990178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Witten/Herdecke University", 
          "id": "https://www.grid.ac/institutes/grid.412581.b", 
          "name": [
            "Integrated Studies for Anthroposophic Medicine; Chair for Theory of Medicine, Integrative and Anthroposophic Medicine, Faculty for Health, University of Witten/Herdecke, Herdecke, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cysarz", 
        "givenName": "D.", 
        "id": "sg:person.0661533570.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661533570.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Biomedical Sciences for Health, Galeazzi Orthopedic Institute, University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porta", 
        "givenName": "A.", 
        "id": "sg:person.0773443056.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773443056.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biomedical and Clinical Sciences, Internal Medicine II, L. Sacco Hospital, University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montano", 
        "givenName": "N.", 
        "id": "sg:person.0644125135.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644125135.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Witten/Herdecke University", 
          "id": "https://www.grid.ac/institutes/grid.412581.b", 
          "name": [
            "Department of Radiology and Microtherapy, Faculty for Health, University of Witten/Herdecke, Herdecke, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leeuwen", 
        "givenName": "P.V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research", 
          "id": "https://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Cardiovascular Physics, Department of Physics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany", 
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurths", 
        "givenName": "J.", 
        "id": "sg:person.013646211242.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646211242.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Cardiovascular Physics, Department of Physics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessel", 
        "givenName": "N.", 
        "id": "sg:person.01106451242.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106451242.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.65.051908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002248637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.051908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002248637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5273(02)00139-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002404342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8986.1997.tb02140.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017753601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.518449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019346405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-011-0332-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030503595", 
          "https://doi.org/10.1007/s10439-011-0332-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2011.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.8.886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043872430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00006.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044302846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelectrocard.2011.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046773287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7793.1999.0617t.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049323576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.00161.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053215579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-6363(96)00008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054542394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6363(96)00008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054579273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.166090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057739083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3518688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0967-3334/33/2/207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059123857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.042903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.042903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060735161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.174102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.959324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061086001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/memb.2009.934620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061401840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.6166045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062634943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127407019093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062955187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.93.5.1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063337007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.2000.278.6.h2163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074650033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "The analysis of symbolic dynamics applied to physiological time series is able to retrieve information about dynamical properties of the underlying system that cannot be gained with standard methods like e.g. spectral analysis. Different approaches for the transformation of the original time series to the symbolic time series have been proposed. Yet the differences between the approaches are unknown. In this study three different transformation methods are investigated: (1) symbolization according to the deviation from the average time series, (2) symbolization according to several equidistant levels between the minimum and maximum of the time series, (3) binary symbolization of the first derivative of the time series. Furthermore, permutation entropy was used to quantify the symbolic series. Each method was applied to the cardiac interbeat interval series RRi and its difference \u0394RRI of 17 healthy subjects obtained during head-up tilt testing. The symbolic dynamics of each method is analyzed by means of the occurrence of short sequences (\u201cwords\u201d) of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), words with one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis showed that for method 1 0V%, 1V%, 2LV% and 2UV% changed with increasing tilt angle. For method 2 0V%, 2LV% and 2UV% changed with increasing tilt angle and method 3 showed changes for 0V% and 1V%. Furthermore, also the permutation entropy decreased with increasing tilt angle. In conclusion, all methods are capable of reflecting changes of the cardiac autonomic nervous system during head-up tilt. All methods show that even the analysis of very short symbolic sequences is capable of tracking changes of the cardiac autonomic regulation during head-up tilt testing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2013-01854-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "222"
      }
    ], 
    "name": "Quantifying heart rate dynamics using different approaches of symbolic dynamics", 
    "pagination": "487-500", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2e62f028e0b54ad26102245c0fe6c67ae92140ba696c4b37be8d77d0ca84da6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2013-01854-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050990178"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2013-01854-7", 
      "https://app.dimensions.ai/details/publication/pub.1050990178"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjst%2Fe2013-01854-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01854-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01854-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01854-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2013-01854-7'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2013-01854-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ndeeac3c56d064d1688dde29214f760b1
4 schema:citation sg:pub.10.1007/s10439-011-0332-3
5 https://doi.org/10.1016/0008-6363(96)00008-9
6 https://doi.org/10.1016/j.compbiomed.2011.04.013
7 https://doi.org/10.1016/j.jelectrocard.2011.08.006
8 https://doi.org/10.1016/s0008-6363(96)00008-9
9 https://doi.org/10.1016/s0167-5273(02)00139-0
10 https://doi.org/10.1063/1.166090
11 https://doi.org/10.1063/1.3518688
12 https://doi.org/10.1088/0967-3334/33/2/207
13 https://doi.org/10.1103/physreve.65.051908
14 https://doi.org/10.1103/physreve.74.042903
15 https://doi.org/10.1103/physrevlett.88.174102
16 https://doi.org/10.1109/10.959324
17 https://doi.org/10.1109/memb.2009.934620
18 https://doi.org/10.1111/j.1469-7793.1999.0617t.x
19 https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
20 https://doi.org/10.1126/science.6166045
21 https://doi.org/10.1142/s0218127407019093
22 https://doi.org/10.1152/ajpheart.00006.2007
23 https://doi.org/10.1152/ajpheart.2000.278.6.h2163
24 https://doi.org/10.1152/ajpregu.00161.2006
25 https://doi.org/10.1161/01.cir.101.8.886
26 https://doi.org/10.1161/01.cir.93.5.1043
27 https://doi.org/10.1161/circulationaha.104.518449
28 schema:datePublished 2013-06
29 schema:datePublishedReg 2013-06-01
30 schema:description The analysis of symbolic dynamics applied to physiological time series is able to retrieve information about dynamical properties of the underlying system that cannot be gained with standard methods like e.g. spectral analysis. Different approaches for the transformation of the original time series to the symbolic time series have been proposed. Yet the differences between the approaches are unknown. In this study three different transformation methods are investigated: (1) symbolization according to the deviation from the average time series, (2) symbolization according to several equidistant levels between the minimum and maximum of the time series, (3) binary symbolization of the first derivative of the time series. Furthermore, permutation entropy was used to quantify the symbolic series. Each method was applied to the cardiac interbeat interval series RRi and its difference ΔRRI of 17 healthy subjects obtained during head-up tilt testing. The symbolic dynamics of each method is analyzed by means of the occurrence of short sequences (“words”) of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), words with one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis showed that for method 1 0V%, 1V%, 2LV% and 2UV% changed with increasing tilt angle. For method 2 0V%, 2LV% and 2UV% changed with increasing tilt angle and method 3 showed changes for 0V% and 1V%. Furthermore, also the permutation entropy decreased with increasing tilt angle. In conclusion, all methods are capable of reflecting changes of the cardiac autonomic nervous system during head-up tilt. All methods show that even the analysis of very short symbolic sequences is capable of tracking changes of the cardiac autonomic regulation during head-up tilt testing.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N4ebc7c07495149ca94664d35791793ff
35 Naee767113755472fb5257ede6d5b7e1b
36 sg:journal.1297403
37 schema:name Quantifying heart rate dynamics using different approaches of symbolic dynamics
38 schema:pagination 487-500
39 schema:productId N0e8c9aa6132b4b55877e8f6a32932950
40 N56e18bbf99af4ee8bedb20db7b205845
41 Nc9b843bbde1c44b0a7badaa762c818a2
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990178
43 https://doi.org/10.1140/epjst/e2013-01854-7
44 schema:sdDatePublished 2019-04-10T22:37
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N9bbc1bcf8f4a4599bb808d1b3da9aec1
47 schema:url http://link.springer.com/10.1140%2Fepjst%2Fe2013-01854-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N00e88ae0e0ad41f7bb1e42bef6a827d5 rdf:first sg:person.0773443056.55
52 rdf:rest N1aa9da1dd1904561912265824d62b2bf
53 N0e8c9aa6132b4b55877e8f6a32932950 schema:name doi
54 schema:value 10.1140/epjst/e2013-01854-7
55 rdf:type schema:PropertyValue
56 N1806c38f43b349c991f6a89ee610acc4 rdf:first sg:person.013646211242.82
57 rdf:rest Nad6e368ecab445dab83bdcdbfdda1491
58 N1aa9da1dd1904561912265824d62b2bf rdf:first sg:person.0644125135.35
59 rdf:rest Nb17bee308a5a4b53bfaa3884e869fa89
60 N2a90d27072c6457482a16022a46c0022 schema:name Department of Biomedical and Clinical Sciences, Internal Medicine II, L. Sacco Hospital, University of Milan, Milan, Italy
61 rdf:type schema:Organization
62 N4ebc7c07495149ca94664d35791793ff schema:issueNumber 2
63 rdf:type schema:PublicationIssue
64 N56e18bbf99af4ee8bedb20db7b205845 schema:name dimensions_id
65 schema:value pub.1050990178
66 rdf:type schema:PropertyValue
67 N9bbc1bcf8f4a4599bb808d1b3da9aec1 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nad6e368ecab445dab83bdcdbfdda1491 rdf:first sg:person.01106451242.37
70 rdf:rest rdf:nil
71 Naee767113755472fb5257ede6d5b7e1b schema:volumeNumber 222
72 rdf:type schema:PublicationVolume
73 Nb17bee308a5a4b53bfaa3884e869fa89 rdf:first Nbaa8d7e485e84aeba0bf186593b9a21b
74 rdf:rest N1806c38f43b349c991f6a89ee610acc4
75 Nbaa8d7e485e84aeba0bf186593b9a21b schema:affiliation https://www.grid.ac/institutes/grid.412581.b
76 schema:familyName Leeuwen
77 schema:givenName P.V.
78 rdf:type schema:Person
79 Nc9b843bbde1c44b0a7badaa762c818a2 schema:name readcube_id
80 schema:value f2e62f028e0b54ad26102245c0fe6c67ae92140ba696c4b37be8d77d0ca84da6
81 rdf:type schema:PropertyValue
82 Ndeeac3c56d064d1688dde29214f760b1 rdf:first sg:person.0661533570.14
83 rdf:rest N00e88ae0e0ad41f7bb1e42bef6a827d5
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1297403 schema:issn 1951-6355
91 1951-6401
92 schema:name The European Physical Journal Special Topics
93 rdf:type schema:Periodical
94 sg:person.01106451242.37 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
95 schema:familyName Wessel
96 schema:givenName N.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106451242.37
98 rdf:type schema:Person
99 sg:person.013646211242.82 schema:affiliation https://www.grid.ac/institutes/grid.4556.2
100 schema:familyName Kurths
101 schema:givenName J.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646211242.82
103 rdf:type schema:Person
104 sg:person.0644125135.35 schema:affiliation N2a90d27072c6457482a16022a46c0022
105 schema:familyName Montano
106 schema:givenName N.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644125135.35
108 rdf:type schema:Person
109 sg:person.0661533570.14 schema:affiliation https://www.grid.ac/institutes/grid.412581.b
110 schema:familyName Cysarz
111 schema:givenName D.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661533570.14
113 rdf:type schema:Person
114 sg:person.0773443056.55 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
115 schema:familyName Porta
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773443056.55
118 rdf:type schema:Person
119 sg:pub.10.1007/s10439-011-0332-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030503595
120 https://doi.org/10.1007/s10439-011-0332-3
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0008-6363(96)00008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054542394
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compbiomed.2011.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062013
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jelectrocard.2011.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046773287
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0008-6363(96)00008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054579273
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0167-5273(02)00139-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002404342
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.166090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057739083
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.3518688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966625
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0967-3334/33/2/207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059123857
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreve.65.051908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002248637
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.74.042903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735161
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.88.174102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824770
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/10.959324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061086001
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/memb.2009.934620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061401840
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1469-7793.1999.0617t.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049323576
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1469-8986.1997.tb02140.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017753601
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.6166045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062634943
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1142/s0218127407019093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955187
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1152/ajpheart.00006.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044302846
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1152/ajpheart.2000.278.6.h2163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074650033
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1152/ajpregu.00161.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053215579
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1161/01.cir.101.8.886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043872430
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1161/01.cir.93.5.1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063337007
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1161/circulationaha.104.518449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019346405
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.412581.b schema:alternateName Witten/Herdecke University
169 schema:name Department of Radiology and Microtherapy, Faculty for Health, University of Witten/Herdecke, Herdecke, Germany
170 Integrated Studies for Anthroposophic Medicine; Chair for Theory of Medicine, Integrative and Anthroposophic Medicine, Faculty for Health, University of Witten/Herdecke, Herdecke, Germany
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.4556.2 schema:alternateName Potsdam Institute for Climate Impact Research
173 schema:name Cardiovascular Physics, Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
174 Potsdam Institute for Climate Impact Research, Potsdam, Germany
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
177 schema:name Department of Biomedical Sciences for Health, Galeazzi Orthopedic Institute, University of Milan, Milan, Italy
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
180 schema:name Cardiovascular Physics, Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...