Theory of collective excitations in simple liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05

AUTHORS

W. Schirmacher, B. Schmid, H. Sinn

ABSTRACT

We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data. More... »

PAGES

3-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2011-01413-4

DOI

http://dx.doi.org/10.1140/epjst/e2011-01413-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050787165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Physik, Johannes Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, 55099, Mainz, Germany", 
            "Physik-Department E13, Technische Universit\u00e4t M\u00fcnchen, James-Franck-Strasse 1, 85747, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schirmacher", 
        "givenName": "W.", 
        "id": "sg:person.01053033471.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053033471.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Gutenberg University of Mainz", 
          "id": "https://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, 55099, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "B.", 
        "id": "sg:person.01006541102.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006541102.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "European XFEL/DESY, Hamburg, Notkestr. 85, 22607, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinn", 
        "givenName": "H.", 
        "id": "sg:person.01004430771.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004430771.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008827644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008827644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019937955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019937955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019937955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/55/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020221181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.031205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.031205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.155301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027353365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.155301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027353365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/38/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048160030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1679784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057755869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1734272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057800659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/17/33/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058961832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.11.2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.11.2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060465120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.1176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.1176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.29.2765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.29.2765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.7.1690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.7.1690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.172202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.172202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.10.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.10.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.096104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.096104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5488/cmp.11.1.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072917949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05", 
    "datePublishedReg": "2011-05-01", 
    "description": "We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjst/e2011-01413-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "196"
      }
    ], 
    "name": "Theory of collective excitations in simple liquids", 
    "pagination": "3-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1edd63f74f8028b9848b5393fe06cd6ec282441feeabfd5c5e8c498e48b5c34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2011-01413-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050787165"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2011-01413-4", 
      "https://app.dimensions.ai/details/publication/pub.1050787165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjst%2Fe2011-01413-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2011-01413-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2011-01413-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2011-01413-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2011-01413-4'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2011-01413-4 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nd04c240e7e664f629c871bf44576d656
4 schema:citation https://doi.org/10.1063/1.1679784
5 https://doi.org/10.1063/1.1734272
6 https://doi.org/10.1088/0022-3719/17/33/005
7 https://doi.org/10.1088/0034-4885/38/4/001
8 https://doi.org/10.1088/0034-4885/55/3/001
9 https://doi.org/10.1103/physrev.165.201
10 https://doi.org/10.1103/physreva.11.2173
11 https://doi.org/10.1103/physreva.17.434
12 https://doi.org/10.1103/physreva.17.447
13 https://doi.org/10.1103/physreva.18.1176
14 https://doi.org/10.1103/physreva.29.2765
15 https://doi.org/10.1103/physreva.7.1690
16 https://doi.org/10.1103/physrevb.74.172202
17 https://doi.org/10.1103/physreve.66.031205
18 https://doi.org/10.1103/physrevlett.10.321
19 https://doi.org/10.1103/physrevlett.85.4076
20 https://doi.org/10.1103/physrevlett.94.155301
21 https://doi.org/10.1103/physrevlett.98.096104
22 https://doi.org/10.1103/revmodphys.77.881
23 https://doi.org/10.5488/cmp.11.1.127
24 schema:datePublished 2011-05
25 schema:datePublishedReg 2011-05-01
26 schema:description We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N9419fd8908344b1dad01635dbbed1b93
31 Na19ec4ba64b14acfb1847e8cc4a865c3
32 sg:journal.1297403
33 schema:name Theory of collective excitations in simple liquids
34 schema:pagination 3-13
35 schema:productId N774439d3049a49caa6b480d0779e65e7
36 Na7c837d4233446e89fd06a9ededa68d5
37 Ndb02378cf7dd4cee9354a249335fd0d6
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050787165
39 https://doi.org/10.1140/epjst/e2011-01413-4
40 schema:sdDatePublished 2019-04-10T15:56
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nf2a70fc6ab744349a0bbfee988df6184
43 schema:url http://link.springer.com/10.1140%2Fepjst%2Fe2011-01413-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N39c230a743ef48bd94d12926b8fd0754 rdf:first sg:person.01004430771.12
48 rdf:rest rdf:nil
49 N47a48e2c1d9546cfa457646c8a4d069b schema:name European XFEL/DESY, Hamburg, Notkestr. 85, 22607, Hamburg, Germany
50 rdf:type schema:Organization
51 N774439d3049a49caa6b480d0779e65e7 schema:name doi
52 schema:value 10.1140/epjst/e2011-01413-4
53 rdf:type schema:PropertyValue
54 N9419fd8908344b1dad01635dbbed1b93 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 Na19ec4ba64b14acfb1847e8cc4a865c3 schema:volumeNumber 196
57 rdf:type schema:PublicationVolume
58 Na67bc670d2c24c1d837d39f0276ab861 rdf:first sg:person.01006541102.67
59 rdf:rest N39c230a743ef48bd94d12926b8fd0754
60 Na7c837d4233446e89fd06a9ededa68d5 schema:name readcube_id
61 schema:value f1edd63f74f8028b9848b5393fe06cd6ec282441feeabfd5c5e8c498e48b5c34
62 rdf:type schema:PropertyValue
63 Nd04c240e7e664f629c871bf44576d656 rdf:first sg:person.01053033471.53
64 rdf:rest Na67bc670d2c24c1d837d39f0276ab861
65 Ndb02378cf7dd4cee9354a249335fd0d6 schema:name dimensions_id
66 schema:value pub.1050787165
67 rdf:type schema:PropertyValue
68 Nf2a70fc6ab744349a0bbfee988df6184 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
71 schema:name Psychology and Cognitive Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
74 schema:name Psychology
75 rdf:type schema:DefinedTerm
76 sg:journal.1297403 schema:issn 1951-6355
77 1951-6401
78 schema:name The European Physical Journal Special Topics
79 rdf:type schema:Periodical
80 sg:person.01004430771.12 schema:affiliation N47a48e2c1d9546cfa457646c8a4d069b
81 schema:familyName Sinn
82 schema:givenName H.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004430771.12
84 rdf:type schema:Person
85 sg:person.01006541102.67 schema:affiliation https://www.grid.ac/institutes/grid.5802.f
86 schema:familyName Schmid
87 schema:givenName B.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006541102.67
89 rdf:type schema:Person
90 sg:person.01053033471.53 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
91 schema:familyName Schirmacher
92 schema:givenName W.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053033471.53
94 rdf:type schema:Person
95 https://doi.org/10.1063/1.1679784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057755869
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.1734272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057800659
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0022-3719/17/33/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058961832
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0034-4885/38/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048160030
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/0034-4885/55/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020221181
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrev.165.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437291
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.11.2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060465120
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.17.434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467029
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.17.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467030
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.18.1176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467130
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.29.2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471988
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physreva.7.1690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500170
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.74.172202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619121
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreve.66.031205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024334426
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.10.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752486
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.85.4076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008827644
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.94.155301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027353365
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.98.096104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833654
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/revmodphys.77.881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019937955
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5488/cmp.11.1.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072917949
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.5802.f schema:alternateName Johannes Gutenberg University of Mainz
136 schema:name Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099, Mainz, Germany
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
139 schema:name Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099, Mainz, Germany
140 Physik-Department E13, Technische Universität München, James-Franck-Strasse 1, 85747, Garching, Germany
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...