Non-traditional stochastic models for ocean waves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-07

AUTHORS

G. Lindgren, D. Bolin, F. Lindgren

ABSTRACT

. We present two flexible stochastic models for 2D and 3D ocean waves with potential to reproduce severe and non-homogeneous sea conditions. The first family consists of generalized Lagrange models for the movements of individual water particles. These models can generate crest-trough and front-back statistically asymmetric waves, with the same degree of asymmetry as measured ocean waves. They are still in the Gaussian family and it is possible to calculate different slope distributions exactly from a wave energy spectrum. The second model is a random field model that is generated by a system of nested stochastic partial differential equations. This model can be adapted to spatially non-homogeneous sea conditions and it can approximate standard wave spectra. One advantage with this model is that Hilbert space approximations can be used to obtain computationally efficient representations with Markov-type properties that facilitate the use of sparse matrix techniques in simulation and estimation. More... »

PAGES

209-224

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2010-01250-y

DOI

http://dx.doi.org/10.1140/epjst/e2010-01250-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014813925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "G.", 
        "id": "sg:person.012274436413.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolin", 
        "givenName": "D.", 
        "id": "sg:person.010070617651.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070617651.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematical sciences, Norwegian University of Science and Technology, Trondheim, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden", 
            "Mathematical sciences, Norwegian University of Science and Technology, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "F.", 
        "id": "sg:person.010744637417.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744637417.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-5449-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032998", 
          "https://doi.org/10.1007/978-1-4612-5449-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-004-4729-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043766741", 
          "https://doi.org/10.1007/s10687-004-4729-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Abstract.\nWe present two flexible stochastic models for 2D and 3D ocean waves with potential to reproduce severe and non-homogeneous sea conditions. The first family consists of generalized Lagrange models for the movements of individual water particles. These models can generate crest-trough and front-back statistically asymmetric waves, with the same degree of asymmetry as measured ocean waves. They are still in the Gaussian family and it is possible to calculate different slope distributions exactly from a wave energy spectrum. The second model is a random field model that is generated by a system of nested stochastic partial differential equations. This model can be adapted to spatially non-homogeneous sea conditions and it can approximate standard wave spectra. One advantage with this model is that Hilbert space approximations can be used to obtain computationally efficient representations with Markov-type properties that facilitate the use of sparse matrix techniques in simulation and estimation.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjst/e2010-01250-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "185"
      }
    ], 
    "keywords": [
      "stochastic model", 
      "stochastic partial differential equations", 
      "partial differential equations", 
      "sparse matrix techniques", 
      "individual water particles", 
      "standard wave spectra", 
      "flexible stochastic model", 
      "random field model", 
      "differential equations", 
      "space approximation", 
      "Gaussian family", 
      "Lagrange model", 
      "matrix technique", 
      "ocean waves", 
      "efficient representation", 
      "field model", 
      "sea conditions", 
      "second model", 
      "first family", 
      "equations", 
      "model", 
      "approximation", 
      "estimation", 
      "representation", 
      "simulations", 
      "water particles", 
      "wave energy spectrum", 
      "slope distribution", 
      "energy spectrum", 
      "waves", 
      "conditions", 
      "system", 
      "technique", 
      "advantages", 
      "distribution", 
      "family", 
      "wave spectrum", 
      "properties", 
      "asymmetric waves", 
      "same degree", 
      "degree", 
      "use", 
      "spectra", 
      "particles", 
      "potential", 
      "movement", 
      "asymmetry", 
      "non-homogeneous sea conditions", 
      "different slope distributions", 
      "Hilbert space approximations", 
      "Markov-type properties", 
      "Non-traditional stochastic models"
    ], 
    "name": "Non-traditional stochastic models for ocean waves", 
    "pagination": "209-224", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014813925"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2010-01250-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2010-01250-y", 
      "https://app.dimensions.ai/details/publication/pub.1014813925"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjst/e2010-01250-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01250-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01250-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01250-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01250-y'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2010-01250-y schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0104
4 schema:author N3bda645c20874139a45b77be272ceec8
5 schema:citation sg:pub.10.1007/978-1-4612-5449-2
6 sg:pub.10.1007/s10687-004-4729-3
7 schema:datePublished 2010-07
8 schema:datePublishedReg 2010-07-01
9 schema:description Abstract. We present two flexible stochastic models for 2D and 3D ocean waves with potential to reproduce severe and non-homogeneous sea conditions. The first family consists of generalized Lagrange models for the movements of individual water particles. These models can generate crest-trough and front-back statistically asymmetric waves, with the same degree of asymmetry as measured ocean waves. They are still in the Gaussian family and it is possible to calculate different slope distributions exactly from a wave energy spectrum. The second model is a random field model that is generated by a system of nested stochastic partial differential equations. This model can be adapted to spatially non-homogeneous sea conditions and it can approximate standard wave spectra. One advantage with this model is that Hilbert space approximations can be used to obtain computationally efficient representations with Markov-type properties that facilitate the use of sparse matrix techniques in simulation and estimation.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N1ccb7b76770e4600a1f36ce6989748e0
14 Nb4d3a0112f9347a5ab1197911150f14d
15 sg:journal.1297403
16 schema:keywords Gaussian family
17 Hilbert space approximations
18 Lagrange model
19 Markov-type properties
20 Non-traditional stochastic models
21 advantages
22 approximation
23 asymmetric waves
24 asymmetry
25 conditions
26 degree
27 different slope distributions
28 differential equations
29 distribution
30 efficient representation
31 energy spectrum
32 equations
33 estimation
34 family
35 field model
36 first family
37 flexible stochastic model
38 individual water particles
39 matrix technique
40 model
41 movement
42 non-homogeneous sea conditions
43 ocean waves
44 partial differential equations
45 particles
46 potential
47 properties
48 random field model
49 representation
50 same degree
51 sea conditions
52 second model
53 simulations
54 slope distribution
55 space approximation
56 sparse matrix techniques
57 spectra
58 standard wave spectra
59 stochastic model
60 stochastic partial differential equations
61 system
62 technique
63 use
64 water particles
65 wave energy spectrum
66 wave spectrum
67 waves
68 schema:name Non-traditional stochastic models for ocean waves
69 schema:pagination 209-224
70 schema:productId N4b2cc33e1648445381edd222e6751c53
71 Nc611665fc39b440ea75b658ee3f98fc7
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014813925
73 https://doi.org/10.1140/epjst/e2010-01250-y
74 schema:sdDatePublished 2022-01-01T18:22
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N0c61037afeda408d84d0e504331b078d
77 schema:url https://doi.org/10.1140/epjst/e2010-01250-y
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0c61037afeda408d84d0e504331b078d schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N1ccb7b76770e4600a1f36ce6989748e0 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N3bda645c20874139a45b77be272ceec8 rdf:first sg:person.012274436413.00
86 rdf:rest Nef1eb208fbed4921ba06768c230bf3e6
87 N4b2cc33e1648445381edd222e6751c53 schema:name doi
88 schema:value 10.1140/epjst/e2010-01250-y
89 rdf:type schema:PropertyValue
90 N7f4d237f89784429919e9fa78cfb384d rdf:first sg:person.010744637417.62
91 rdf:rest rdf:nil
92 Nb4d3a0112f9347a5ab1197911150f14d schema:volumeNumber 185
93 rdf:type schema:PublicationVolume
94 Nc611665fc39b440ea75b658ee3f98fc7 schema:name dimensions_id
95 schema:value pub.1014813925
96 rdf:type schema:PropertyValue
97 Nef1eb208fbed4921ba06768c230bf3e6 rdf:first sg:person.010070617651.06
98 rdf:rest N7f4d237f89784429919e9fa78cfb384d
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
103 schema:name Applied Mathematics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
106 schema:name Statistics
107 rdf:type schema:DefinedTerm
108 sg:journal.1297403 schema:issn 1951-6355
109 1951-6401
110 schema:name The European Physical Journal Special Topics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010070617651.06 schema:affiliation grid-institutes:grid.4514.4
114 schema:familyName Bolin
115 schema:givenName D.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070617651.06
117 rdf:type schema:Person
118 sg:person.010744637417.62 schema:affiliation grid-institutes:grid.5947.f
119 schema:familyName Lindgren
120 schema:givenName F.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744637417.62
122 rdf:type schema:Person
123 sg:person.012274436413.00 schema:affiliation grid-institutes:grid.4514.4
124 schema:familyName Lindgren
125 schema:givenName G.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4612-5449-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018032998
129 https://doi.org/10.1007/978-1-4612-5449-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10687-004-4729-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043766741
132 https://doi.org/10.1007/s10687-004-4729-3
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.4514.4 schema:alternateName Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden
135 schema:name Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden
136 rdf:type schema:Organization
137 grid-institutes:grid.5947.f schema:alternateName Mathematical sciences, Norwegian University of Science and Technology, Trondheim, Norway
138 schema:name Mathematical sciences, Norwegian University of Science and Technology, Trondheim, Norway
139 Mathematical statistics, Lund University, Box 118, 221 00, Lund, Sweden
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...