Thermodynamics of stressed solids: Slow deformation and roughening of material interfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

L. Angheluta, J. Mathiesen

ABSTRACT

At every turn in nature we are confronted with complex patterns. Patterns often formed in multiphase systems by an intricate dynamics of mass transport, e.g. diffusion and/or advection, and mass exchange between individual phases. Here we consider instabilities of phase boundaries in idealized stressed multiphase systems. Specifically, we study the growth of small perturbations of surfaces by considering mass transport from regions, where the stress and chemical potential is high, to surrounding regions where the stress and chemical potential is low. We present a linear stability analysis for various stress configurations and their corresponding stability diagrams. More... »

PAGES

123-132

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjst/e2010-01185-3

DOI

http://dx.doi.org/10.1140/epjst/e2010-01185-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045984650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics of Geological Processes, University of Oslo, Oslo, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "Physics of Geological Processes, University of Oslo, Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angheluta", 
        "givenName": "L.", 
        "id": "sg:person.0674666513.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674666513.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen O, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Physics of Geological Processes, University of Oslo, Oslo, Norway", 
            "Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen O, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathiesen", 
        "givenName": "J.", 
        "id": "sg:person.01031653041.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031653041.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02642562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048580176", 
          "https://doi.org/10.1007/bf02642562"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "Abstract\nAt every turn in nature we are confronted with complex patterns. Patterns often formed in multiphase systems by an intricate dynamics of mass transport, e.g. diffusion and/or advection, and mass exchange between individual phases. Here we consider instabilities of phase boundaries in idealized stressed multiphase systems. Specifically, we study the growth of small perturbations of surfaces by considering mass transport from regions, where the stress and chemical potential is high, to surrounding regions where the stress and chemical potential is low. We present a linear stability analysis for various stress configurations and their corresponding stability diagrams.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjst/e2010-01185-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297403", 
        "issn": [
          "1951-6355", 
          "1951-6401"
        ], 
        "name": "The European Physical Journal Special Topics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "178"
      }
    ], 
    "keywords": [
      "multiphase systems", 
      "mass transport", 
      "linear stability analysis", 
      "material interfaces", 
      "mass exchange", 
      "individual phases", 
      "phase boundary", 
      "slow deformation", 
      "stability analysis", 
      "stress configuration", 
      "stability diagram", 
      "deformation", 
      "stress", 
      "roughening", 
      "transport", 
      "chemical potential", 
      "solids", 
      "advection", 
      "interface", 
      "surface", 
      "diffusion", 
      "corresponding stability diagrams", 
      "small perturbations", 
      "system", 
      "boundaries", 
      "configuration", 
      "instability", 
      "thermodynamics", 
      "phase", 
      "potential", 
      "diagram", 
      "region", 
      "dynamics", 
      "intricate dynamics", 
      "perturbations", 
      "analysis", 
      "turn", 
      "growth", 
      "nature", 
      "exchange", 
      "patterns", 
      "complex pattern"
    ], 
    "name": "Thermodynamics of stressed solids: Slow deformation and roughening of material interfaces", 
    "pagination": "123-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045984650"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjst/e2010-01185-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjst/e2010-01185-3", 
      "https://app.dimensions.ai/details/publication/pub.1045984650"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjst/e2010-01185-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01185-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01185-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01185-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2010-01185-3'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      22 PREDICATES      69 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjst/e2010-01185-3 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nac363459b19544c0a334f4c056892182
4 schema:citation sg:pub.10.1007/bf02642562
5 schema:datePublished 2009-11
6 schema:datePublishedReg 2009-11-01
7 schema:description Abstract At every turn in nature we are confronted with complex patterns. Patterns often formed in multiphase systems by an intricate dynamics of mass transport, e.g. diffusion and/or advection, and mass exchange between individual phases. Here we consider instabilities of phase boundaries in idealized stressed multiphase systems. Specifically, we study the growth of small perturbations of surfaces by considering mass transport from regions, where the stress and chemical potential is high, to surrounding regions where the stress and chemical potential is low. We present a linear stability analysis for various stress configurations and their corresponding stability diagrams.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3484050d206b4683bf4701efb3de678e
12 N940d5b979b4a4124b6251f8c613d25d4
13 sg:journal.1297403
14 schema:keywords advection
15 analysis
16 boundaries
17 chemical potential
18 complex pattern
19 configuration
20 corresponding stability diagrams
21 deformation
22 diagram
23 diffusion
24 dynamics
25 exchange
26 growth
27 individual phases
28 instability
29 interface
30 intricate dynamics
31 linear stability analysis
32 mass exchange
33 mass transport
34 material interfaces
35 multiphase systems
36 nature
37 patterns
38 perturbations
39 phase
40 phase boundary
41 potential
42 region
43 roughening
44 slow deformation
45 small perturbations
46 solids
47 stability analysis
48 stability diagram
49 stress
50 stress configuration
51 surface
52 system
53 thermodynamics
54 transport
55 turn
56 schema:name Thermodynamics of stressed solids: Slow deformation and roughening of material interfaces
57 schema:pagination 123-132
58 schema:productId N534ecdbaacbd49598c22c5d8152d27f8
59 Ndd776159361e4f78bd78534937a6729e
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045984650
61 https://doi.org/10.1140/epjst/e2010-01185-3
62 schema:sdDatePublished 2021-11-01T18:13
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nf05976a8a0c4476da3f2435c2cb137e4
65 schema:url https://doi.org/10.1140/epjst/e2010-01185-3
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N3484050d206b4683bf4701efb3de678e schema:volumeNumber 178
70 rdf:type schema:PublicationVolume
71 N51edcc247c554504a27a9a01f164e320 rdf:first sg:person.01031653041.19
72 rdf:rest rdf:nil
73 N534ecdbaacbd49598c22c5d8152d27f8 schema:name dimensions_id
74 schema:value pub.1045984650
75 rdf:type schema:PropertyValue
76 N940d5b979b4a4124b6251f8c613d25d4 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Nac363459b19544c0a334f4c056892182 rdf:first sg:person.0674666513.17
79 rdf:rest N51edcc247c554504a27a9a01f164e320
80 Ndd776159361e4f78bd78534937a6729e schema:name doi
81 schema:value 10.1140/epjst/e2010-01185-3
82 rdf:type schema:PropertyValue
83 Nf05976a8a0c4476da3f2435c2cb137e4 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 sg:journal.1297403 schema:issn 1951-6355
92 1951-6401
93 schema:name The European Physical Journal Special Topics
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.01031653041.19 schema:affiliation grid-institutes:grid.5254.6
97 schema:familyName Mathiesen
98 schema:givenName J.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031653041.19
100 rdf:type schema:Person
101 sg:person.0674666513.17 schema:affiliation grid-institutes:grid.5510.1
102 schema:familyName Angheluta
103 schema:givenName L.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674666513.17
105 rdf:type schema:Person
106 sg:pub.10.1007/bf02642562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048580176
107 https://doi.org/10.1007/bf02642562
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.5254.6 schema:alternateName Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen O, Denmark
110 schema:name Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen O, Denmark
111 Physics of Geological Processes, University of Oslo, Oslo, Norway
112 rdf:type schema:Organization
113 grid-institutes:grid.5510.1 schema:alternateName Physics of Geological Processes, University of Oslo, Oslo, Norway
114 schema:name Physics of Geological Processes, University of Oslo, Oslo, Norway
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...