Ontology type: schema:ScholarlyArticle
2008-07
AUTHORSA. V. Glushkov, O. Yu. Khetselius, S. V. Malinovskaya
ABSTRACT. A consistent QED perturbation theory approach is applied to calculation of the electron-nuclear γ-transition spectrum of nucleus in the multicharged ion. The intensities of satellites are defined within the relativistic version of the energy approach (Gell-Mann and Low S-matrix formalism). As example, the nuclear transition in the isotope \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\begin{smallmatrix} 57 26 \end{smallmatrix}Fe$\end{document} with the energy 14.41 keV is considered. The results of the relativistic calculation for the electron-nuclear γ-transition spectrum (a set of electron satellites) of the nucleus in a multicharged atomic ion FeXIX are presented. The possible experiments for observation of the new effect in the thermalized plasma of the O-like ions are discussed. A consistent quantum approach to calculation of the electron-nuclear γ transition spectrum (a set of vibration-rotational satellites in a molecule) of nucleus in a molecule is proposed and based on the Dunham model potential approximation for potential curves of the diatomic molecules. Model proposed generelizes the well known Letokhov-Minogin model. The estimates are made for vibration-rotation-nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 127I (E(0)γ=203 keV) in the molecule of H127I. More... »
PAGES195-204
http://scigraph.springernature.com/pub.10.1140/epjst/e2008-00723-x
DOIhttp://dx.doi.org/10.1140/epjst/e2008-00723-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039302567
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, 142090, Moscow Reg., Russia",
"id": "http://www.grid.ac/institutes/grid.465320.6",
"name": [
"Odessa University, PO\u00a0Box 24a, 65009, Odessa, Ukraine",
"Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, 142090, Moscow Reg., Russia"
],
"type": "Organization"
},
"familyName": "Glushkov",
"givenName": "A. V.",
"id": "sg:person.012001573415.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Odessa University, PO\u00a0Box 24a, 65009, Odessa, Ukraine",
"Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Khetselius",
"givenName": "O. Yu.",
"id": "sg:person.014624751311.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine"
],
"type": "Organization"
},
"familyName": "Malinovskaya",
"givenName": "S. V.",
"id": "sg:person.016714656403.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016714656403.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02710764",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021274643",
"https://doi.org/10.1007/bf02710764"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-07",
"datePublishedReg": "2008-07-01",
"description": "Abstract.\nA consistent QED perturbation theory approach is applied to\ncalculation of the electron-nuclear \u03b3-transition spectrum\nof nucleus in the multicharged ion. The intensities of satellites\nare defined within the relativistic version of the energy approach\n(Gell-Mann and Low S-matrix formalism). As example, the nuclear\ntransition in the isotope \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\begin{smallmatrix} 57 26\n\\end{smallmatrix}Fe$\\end{document} with the energy 14.41\u2009keV is considered. The\nresults of the relativistic calculation for the electron-nuclear\n\u03b3-transition spectrum (a set of electron satellites) of the\nnucleus in a multicharged atomic ion FeXIX are presented. The\npossible experiments for observation of the new effect in the\nthermalized plasma of the O-like ions are discussed. A consistent\nquantum approach to calculation of the electron-nuclear \u03b3\ntransition spectrum (a set of vibration-rotational satellites in a\nmolecule) of nucleus in a molecule is proposed and based on the\nDunham model potential approximation for potential curves of the\ndiatomic molecules. Model proposed generelizes the well known\nLetokhov-Minogin model. The estimates are made for\nvibration-rotation-nuclear transition probabilities in a case of\nthe emission and absorption spectrum of nucleus 127I\n(E(0)\u03b3=203\u2009keV) in the molecule of H127I.",
"genre": "article",
"id": "sg:pub.10.1140/epjst/e2008-00723-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297403",
"issn": [
"1951-6355",
"1951-6401"
],
"name": "The European Physical Journal Special Topics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "160"
}
],
"keywords": [
"electron-nuclear \u03b3",
"transition spectra",
"model potential approximation",
"nuclear transition probabilities",
"intensity of satellites",
"thermalized plasma",
"quantum optics",
"perturbation theory approach",
"Electron-Nuclear",
"like ions",
"quantum approach",
"relativistic calculations",
"possible experiments",
"relativistic version",
"diatomic molecules",
"absorption spectra",
"potential approximation",
"potential curves",
"new effects",
"nuclear processes",
"optics",
"transition probabilities",
"spectra",
"calculations",
"ions",
"nucleus",
"keV",
"spectroscopy",
"plasma",
"emission",
"satellite",
"molecules",
"transition",
"isotopes",
"theory approach",
"approximation",
"nuclear",
"intensity",
"energy approach",
"experiments",
"model",
"curves",
"probability",
"effect",
"process",
"results",
"approach",
"example",
"estimates",
"cases",
"version",
"trends",
"observations"
],
"name": "Optics and spectroscopy of cooperative laser-electron nuclear processes in atomic and molecular systems \u2013 new trend in quantum optics",
"pagination": "195-204",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039302567"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjst/e2008-00723-x"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjst/e2008-00723-x",
"https://app.dimensions.ai/details/publication/pub.1039302567"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_466.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjst/e2008-00723-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2008-00723-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2008-00723-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2008-00723-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjst/e2008-00723-x'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
81 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjst/e2008-00723-x | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0299 |
4 | ″ | schema:author | N5db3f0e60c4f4bb28006b76be12386ee |
5 | ″ | schema:citation | sg:pub.10.1007/bf02710764 |
6 | ″ | schema:datePublished | 2008-07 |
7 | ″ | schema:datePublishedReg | 2008-07-01 |
8 | ″ | schema:description | Abstract. A consistent QED perturbation theory approach is applied to calculation of the electron-nuclear γ-transition spectrum of nucleus in the multicharged ion. The intensities of satellites are defined within the relativistic version of the energy approach (Gell-Mann and Low S-matrix formalism). As example, the nuclear transition in the isotope \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\begin{smallmatrix} 57 26 \end{smallmatrix}Fe$\end{document} with the energy 14.41 keV is considered. The results of the relativistic calculation for the electron-nuclear γ-transition spectrum (a set of electron satellites) of the nucleus in a multicharged atomic ion FeXIX are presented. The possible experiments for observation of the new effect in the thermalized plasma of the O-like ions are discussed. A consistent quantum approach to calculation of the electron-nuclear γ transition spectrum (a set of vibration-rotational satellites in a molecule) of nucleus in a molecule is proposed and based on the Dunham model potential approximation for potential curves of the diatomic molecules. Model proposed generelizes the well known Letokhov-Minogin model. The estimates are made for vibration-rotation-nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 127I (E(0)γ=203 keV) in the molecule of H127I. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N305e42eb4a464fec9396be5da2c4baf6 |
13 | ″ | ″ | N79d648c2a0974bcd93801a8716db7b20 |
14 | ″ | ″ | sg:journal.1297403 |
15 | ″ | schema:keywords | Electron-Nuclear |
16 | ″ | ″ | absorption spectra |
17 | ″ | ″ | approach |
18 | ″ | ″ | approximation |
19 | ″ | ″ | calculations |
20 | ″ | ″ | cases |
21 | ″ | ″ | curves |
22 | ″ | ″ | diatomic molecules |
23 | ″ | ″ | effect |
24 | ″ | ″ | electron-nuclear γ |
25 | ″ | ″ | emission |
26 | ″ | ″ | energy approach |
27 | ″ | ″ | estimates |
28 | ″ | ″ | example |
29 | ″ | ″ | experiments |
30 | ″ | ″ | intensity |
31 | ″ | ″ | intensity of satellites |
32 | ″ | ″ | ions |
33 | ″ | ″ | isotopes |
34 | ″ | ″ | keV |
35 | ″ | ″ | like ions |
36 | ″ | ″ | model |
37 | ″ | ″ | model potential approximation |
38 | ″ | ″ | molecules |
39 | ″ | ″ | new effects |
40 | ″ | ″ | nuclear |
41 | ″ | ″ | nuclear processes |
42 | ″ | ″ | nuclear transition probabilities |
43 | ″ | ″ | nucleus |
44 | ″ | ″ | observations |
45 | ″ | ″ | optics |
46 | ″ | ″ | perturbation theory approach |
47 | ″ | ″ | plasma |
48 | ″ | ″ | possible experiments |
49 | ″ | ″ | potential approximation |
50 | ″ | ″ | potential curves |
51 | ″ | ″ | probability |
52 | ″ | ″ | process |
53 | ″ | ″ | quantum approach |
54 | ″ | ″ | quantum optics |
55 | ″ | ″ | relativistic calculations |
56 | ″ | ″ | relativistic version |
57 | ″ | ″ | results |
58 | ″ | ″ | satellite |
59 | ″ | ″ | spectra |
60 | ″ | ″ | spectroscopy |
61 | ″ | ″ | theory approach |
62 | ″ | ″ | thermalized plasma |
63 | ″ | ″ | transition |
64 | ″ | ″ | transition probabilities |
65 | ″ | ″ | transition spectra |
66 | ″ | ″ | trends |
67 | ″ | ″ | version |
68 | ″ | schema:name | Optics and spectroscopy of cooperative laser-electron nuclear processes in atomic and molecular systems – new trend in quantum optics |
69 | ″ | schema:pagination | 195-204 |
70 | ″ | schema:productId | N4455c898cd1045968add68b55367ed3b |
71 | ″ | ″ | N9c1264f95ef948d0a9a0ea33623cb80b |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039302567 |
73 | ″ | ″ | https://doi.org/10.1140/epjst/e2008-00723-x |
74 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N0b50771f66e7483f9545a7a2f0a96e0e |
77 | ″ | schema:url | https://doi.org/10.1140/epjst/e2008-00723-x |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N0b50771f66e7483f9545a7a2f0a96e0e | schema:name | Springer Nature - SN SciGraph project |
82 | ″ | rdf:type | schema:Organization |
83 | N2a9a849fe4914a52a7da00bc942f774b | rdf:first | sg:person.016714656403.31 |
84 | ″ | rdf:rest | rdf:nil |
85 | N305e42eb4a464fec9396be5da2c4baf6 | schema:issueNumber | 1 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N4455c898cd1045968add68b55367ed3b | schema:name | doi |
88 | ″ | schema:value | 10.1140/epjst/e2008-00723-x |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N5db3f0e60c4f4bb28006b76be12386ee | rdf:first | sg:person.012001573415.12 |
91 | ″ | rdf:rest | Nf81f022933e44d789a02e1b84c30a375 |
92 | N79d648c2a0974bcd93801a8716db7b20 | schema:volumeNumber | 160 |
93 | ″ | rdf:type | schema:PublicationVolume |
94 | N9c1264f95ef948d0a9a0ea33623cb80b | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1039302567 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nf81f022933e44d789a02e1b84c30a375 | rdf:first | sg:person.014624751311.43 |
98 | ″ | rdf:rest | N2a9a849fe4914a52a7da00bc942f774b |
99 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Physical Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Other Physical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1297403 | schema:issn | 1951-6355 |
109 | ″ | ″ | 1951-6401 |
110 | ″ | schema:name | The European Physical Journal Special Topics |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.012001573415.12 | schema:affiliation | grid-institutes:grid.465320.6 |
114 | ″ | schema:familyName | Glushkov |
115 | ″ | schema:givenName | A. V. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.014624751311.43 | schema:affiliation | grid-institutes:None |
119 | ″ | schema:familyName | Khetselius |
120 | ″ | schema:givenName | O. Yu. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.016714656403.31 | schema:affiliation | grid-institutes:None |
124 | ″ | schema:familyName | Malinovskaya |
125 | ″ | schema:givenName | S. V. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016714656403.31 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1007/bf02710764 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021274643 |
129 | ″ | ″ | https://doi.org/10.1007/bf02710764 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | grid-institutes:None | schema:alternateName | Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine |
132 | ″ | schema:name | Centre for Quantum Optics, PO Box 24a, 65009, Odessa, Ukraine |
133 | ″ | ″ | Odessa University, PO Box 24a, 65009, Odessa, Ukraine |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.465320.6 | schema:alternateName | Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, 142090, Moscow Reg., Russia |
136 | ″ | schema:name | Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, 142090, Moscow Reg., Russia |
137 | ″ | ″ | Odessa University, PO Box 24a, 65009, Odessa, Ukraine |
138 | ″ | rdf:type | schema:Organization |