Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-04

AUTHORS

David d’Enterria, Andres Poldaru, George Wojcik

ABSTRACT

The Future Circular Collider (FCC-ee) offers the unique opportunity of studying the Higgs Yukawa coupling to the electron, ye\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_\mathrm {e}$$\end{document}, via resonant s-channel production, e+e-→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e^+e^-}\rightarrow \mathrm {H}$$\end{document}, in a dedicated run at s=mH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = m_\mathrm {H}$$\end{document}. The signature for direct Higgs production is a small rise in the cross sections for particular final states, consistent with Higgs decays, over the expectations for their occurrence due to Standard Model (SM) background processes involving Z∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Z}^*$$\end{document}, γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^*$$\end{document}, or t-channel exchanges alone. Performing such a measurement is remarkably challenging for four main reasons. First, the low value of the e±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\pm $$\end{document} mass leads to a tiny ye\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_\mathrm {e}$$\end{document} coupling and correspondingly small cross section: σee→H∝me2=0.57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm {ee\rightarrow H} \propto m_\mathrm {e}^2 = 0.57$$\end{document} fb accounting for initial-state γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} radiation. Second, the e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e^+e^-}$$\end{document} beams must be monochromatized such that the spread of their centre-of-mass (c.m.) energy is commensurate with the narrow width of the SM Higgs boson, ΓH=4.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _\mathrm {H} = 4.1$$\end{document} MeV, while keeping large beam luminosities. Third, the Higgs mass must also be known beforehand with a few-MeV accuracy in order to operate the collider at the resonance peak, s=mH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = m_\mathrm {H}$$\end{document}. Last but not least, the cross sections of the background processes are many orders-of-magnitude larger than those of the Higgs decay signals. A preliminary generator-level study of 11 Higgs decay channels using a multivariate analysis, which exploits boosted decision trees to discriminate signal and background events, identifies two final states as the most promising ones in terms of statistical significance: H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}\rightarrow gg$$\end{document} and H→WW∗→ℓν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}\rightarrow \mathrm {W}\mathrm {W}^*\!\rightarrow \ell \nu $$\end{document} + 2 jets. For a benchmark monochromatization with 4.1-MeV c.m. energy spread (leading to σee→H=0.28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm {ee\rightarrow H} = 0.28$$\end{document} fb) and 10 ab-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of integrated luminosity, a 1.3σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.3\sigma $$\end{document} signal significance can be reached, corresponding to an upper limit on the e±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\pm $$\end{document} Yukawa coupling at 1.6 times the SM value: |ye|<1.6|yeSM|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|y_\mathrm {e}|<1.6|y^\mathrm {\textsc {sm}}_\mathrm {e}|$$\end{document} at 95% confidence level, per FCC-ee interaction point per year. Directions for future improvements of the study are outlined. More... »

PAGES

201

References to SciGraph publications

  • 2019-07-05. FCC-hh: The Hadron Collider in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2021-08-13. Particle identification at FCC-ee in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2015-05-25. Experimental constraints on the coupling of the Higgs boson to electrons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-06-04. FCC-ee: The Lepton Collider in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2021-11-19. Feebly-interacting particles: FIPs 2020 workshop report in EUROPEAN PHYSICAL JOURNAL C
  • 2021-12-15. A special Higgs challenge: measuring the mass and production cross section with ultimate precision at FCC-ee in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2019-06-05. FCC Physics Opportunities in EUROPEAN PHYSICAL JOURNAL C
  • 2018-04-10. Large Higgs-electron Yukawa coupling in 2HDM in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-07-15. The Higgs boson implications and prospects for future discoveries in NATURE REVIEWS PHYSICS
  • 2012-03-16. FastJet user manual in EUROPEAN PHYSICAL JOURNAL C
  • 2011-09-21. WHIZARD—simulating multi-particle processes at LHC and ILC in EUROPEAN PHYSICAL JOURNAL C
  • 2014-01-29. First look at the physics case of TLEP in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-12-11. The Lund jet plane in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10-22. Automated event generation for loop-induced processes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-17. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02204-2

    DOI

    http://dx.doi.org/10.1140/epjp/s13360-021-02204-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145282108


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CERN, EP Department, 1211, Geneva, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "CERN, EP Department, 1211, Geneva, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "d\u2019Enterria", 
            "givenName": "David", 
            "id": "sg:person.016312771362.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312771362.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "LMU, 80539, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "LMU, 80539, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poldaru", 
            "givenName": "Andres", 
            "id": "sg:person.016155013337.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155013337.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SLAC, 2575 Sand Hill Rd., 94025, Menlo Park, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.445003.6", 
              "name": [
                "SLAC, 2575 Sand Hill Rd., 94025, Menlo Park, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wojcik", 
            "givenName": "George", 
            "id": "sg:person.07364766044.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364766044.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep12(2018)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110668227", 
              "https://doi.org/10.1007/jhep12(2018)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-011-1742-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033365813", 
              "https://doi.org/10.1140/epjc/s10052-011-1742-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045799986", 
              "https://doi.org/10.1007/jhep05(2015)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-021-09703-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1142694383", 
              "https://doi.org/10.1140/epjc/s10052-021-09703-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/s13360-021-01810-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140412488", 
              "https://doi.org/10.1140/epjp/s13360-021-01810-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/s13360-021-02202-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1143904608", 
              "https://doi.org/10.1140/epjp/s13360-021-02202-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103242299", 
              "https://doi.org/10.1007/jhep04(2018)044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-012-1896-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009624676", 
              "https://doi.org/10.1140/epjc/s10052-012-1896-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-019-6904-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116676785", 
              "https://doi.org/10.1140/epjc/s10052-019-6904-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42254-021-00341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139694254", 
              "https://doi.org/10.1038/s42254-021-00341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022665897", 
              "https://doi.org/10.1007/jhep01(2014)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053157974", 
              "https://doi.org/10.1007/jhep10(2015)146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2019-900045-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116885146", 
              "https://doi.org/10.1140/epjst/e2019-900045-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2019-900087-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117677916", 
              "https://doi.org/10.1140/epjst/e2019-900087-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024796629", 
              "https://doi.org/10.1007/jhep07(2014)079"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02-04", 
        "datePublishedReg": "2022-02-04", 
        "description": "The Future Circular Collider (FCC-ee) offers the unique opportunity of studying the Higgs Yukawa coupling to the electron, ye\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_\\mathrm {e}$$\\end{document}, via resonant s-channel production, e+e-\u2192H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {e^+e^-}\\rightarrow \\mathrm {H}$$\\end{document}, in a dedicated run at s=mH\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sqrt{s} = m_\\mathrm {H}$$\\end{document}. The signature for direct Higgs production is a small rise in the cross sections for particular final states, consistent with Higgs decays, over the expectations for their occurrence due to Standard Model (SM) background processes involving Z\u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {Z}^*$$\\end{document}, \u03b3\u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma ^*$$\\end{document}, or t-channel exchanges alone. Performing such a measurement is remarkably challenging for four main reasons. First, the low value of the e\u00b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^\\pm $$\\end{document} mass leads to a tiny ye\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_\\mathrm {e}$$\\end{document} coupling and correspondingly small cross section: \u03c3ee\u2192H\u221dme2=0.57\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sigma _\\mathrm {ee\\rightarrow H} \\propto m_\\mathrm {e}^2 = 0.57$$\\end{document}\u00a0fb accounting for initial-state \u03b3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gamma $$\\end{document} radiation. Second, the e+e-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {e^+e^-}$$\\end{document} beams must be monochromatized such that the spread of their centre-of-mass (c.m.) energy is commensurate with the narrow width of the SM Higgs boson, \u0393H=4.1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varGamma _\\mathrm {H} = 4.1$$\\end{document}\u00a0MeV, while keeping large beam luminosities. Third, the Higgs mass must also be known beforehand with a few-MeV accuracy in order to operate the collider at the resonance peak, s=mH\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sqrt{s} = m_\\mathrm {H}$$\\end{document}. Last but not least, the cross sections of the background processes are many orders-of-magnitude larger than those of the Higgs decay signals. A preliminary generator-level study of 11 Higgs decay channels using a multivariate analysis, which exploits boosted decision trees to discriminate signal and background events, identifies two final states as the most promising ones in terms of statistical significance: H\u2192gg\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {H}\\rightarrow gg$$\\end{document} and H\u2192WW\u2217\u2192\u2113\u03bd\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {H}\\rightarrow \\mathrm {W}\\mathrm {W}^*\\!\\rightarrow \\ell \\nu $$\\end{document}\u00a0+\u00a02\u00a0jets. For a benchmark monochromatization with 4.1-MeV c.m. energy spread (leading to \u03c3ee\u2192H=0.28\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sigma _\\mathrm {ee\\rightarrow H} = 0.28$$\\end{document}\u00a0fb) and 10\u00a0ab-1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{-1}$$\\end{document} of integrated luminosity, a 1.3\u03c3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1.3\\sigma $$\\end{document} signal significance can be reached, corresponding to an upper limit on the e\u00b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^\\pm $$\\end{document} Yukawa coupling at 1.6 times the SM value: |ye|<1.6|yeSM|\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|y_\\mathrm {e}|<1.6|y^\\mathrm {\\textsc {sm}}_\\mathrm {e}|$$\\end{document} at 95% confidence level, per FCC-ee interaction point per year. Directions for future improvements of the study are outlined.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjp/s13360-021-02204-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "137"
          }
        ], 
        "keywords": [
          "cross sections", 
          "Future Circular Collider", 
          "Higgs production", 
          "final state", 
          "particular final state", 
          "Standard Model background processes", 
          "SM Higgs boson", 
          "Higgs decay channels", 
          "s-channel production", 
          "background processes", 
          "t-channel exchange", 
          "small cross section", 
          "beam luminosity", 
          "energy spread", 
          "Circular Collider", 
          "Higgs Yukawa", 
          "Higgs decays", 
          "mass energy", 
          "Higgs boson", 
          "meV accuracy", 
          "decay channels", 
          "integrated luminosity", 
          "FCC-ee", 
          "dedicated run", 
          "Higgs mass", 
          "resonance peak", 
          "decay signal", 
          "background events", 
          "signal significance", 
          "interaction point", 
          "electron Yukawa", 
          "Collider", 
          "Yukawa", 
          "narrow width", 
          "luminosity", 
          "upper limit", 
          "SM values", 
          "monochromatization", 
          "electrons", 
          "beam", 
          "bosons", 
          "MeV", 
          "decay", 
          "radiation", 
          "confidence level", 
          "sections", 
          "state", 
          "mass", 
          "coupling", 
          "energy", 
          "width", 
          "jet", 
          "future improvements", 
          "unique opportunity", 
          "measurements", 
          "peak", 
          "signals", 
          "signatures", 
          "lower values", 
          "magnitude", 
          "limit", 
          "order", 
          "channels", 
          "direction", 
          "process", 
          "values", 
          "rise", 
          "exchange", 
          "center", 
          "promising ones", 
          "accuracy", 
          "one", 
          "terms", 
          "Ab", 
          "time", 
          "production", 
          "main reason", 
          "run", 
          "spread", 
          "point", 
          "expectations", 
          "study", 
          "analysis", 
          "events", 
          "improvement", 
          "opportunities", 
          "small rise", 
          "occurrence", 
          "reasons", 
          "C.", 
          "levels", 
          "significance", 
          "statistical significance", 
          "years", 
          "multivariate analysis", 
          "decision tree", 
          "trees"
        ], 
        "name": "Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee", 
        "pagination": "201", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145282108"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/s13360-021-02204-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/s13360-021-02204-2", 
          "https://app.dimensions.ai/details/publication/pub.1145282108"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjp/s13360-021-02204-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02204-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02204-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02204-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02204-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      21 PREDICATES      136 URIs      113 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/s13360-021-02204-2 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N8548067f9d194850a7a2bd6ac7811980
    4 schema:citation sg:pub.10.1007/jhep01(2014)164
    5 sg:pub.10.1007/jhep04(2018)044
    6 sg:pub.10.1007/jhep05(2015)125
    7 sg:pub.10.1007/jhep07(2014)079
    8 sg:pub.10.1007/jhep10(2015)146
    9 sg:pub.10.1007/jhep12(2018)064
    10 sg:pub.10.1038/s42254-021-00341-2
    11 sg:pub.10.1140/epjc/s10052-011-1742-y
    12 sg:pub.10.1140/epjc/s10052-012-1896-2
    13 sg:pub.10.1140/epjc/s10052-019-6904-3
    14 sg:pub.10.1140/epjc/s10052-021-09703-7
    15 sg:pub.10.1140/epjp/s13360-021-01810-4
    16 sg:pub.10.1140/epjp/s13360-021-02202-4
    17 sg:pub.10.1140/epjst/e2019-900045-4
    18 sg:pub.10.1140/epjst/e2019-900087-0
    19 schema:datePublished 2022-02-04
    20 schema:datePublishedReg 2022-02-04
    21 schema:description The Future Circular Collider (FCC-ee) offers the unique opportunity of studying the Higgs Yukawa coupling to the electron, ye\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_\mathrm {e}$$\end{document}, via resonant s-channel production, e+e-→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e^+e^-}\rightarrow \mathrm {H}$$\end{document}, in a dedicated run at s=mH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = m_\mathrm {H}$$\end{document}. The signature for direct Higgs production is a small rise in the cross sections for particular final states, consistent with Higgs decays, over the expectations for their occurrence due to Standard Model (SM) background processes involving Z∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Z}^*$$\end{document}, γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^*$$\end{document}, or t-channel exchanges alone. Performing such a measurement is remarkably challenging for four main reasons. First, the low value of the e±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\pm $$\end{document} mass leads to a tiny ye\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_\mathrm {e}$$\end{document} coupling and correspondingly small cross section: σee→H∝me2=0.57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm {ee\rightarrow H} \propto m_\mathrm {e}^2 = 0.57$$\end{document} fb accounting for initial-state γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} radiation. Second, the e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e^+e^-}$$\end{document} beams must be monochromatized such that the spread of their centre-of-mass (c.m.) energy is commensurate with the narrow width of the SM Higgs boson, ΓH=4.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _\mathrm {H} = 4.1$$\end{document} MeV, while keeping large beam luminosities. Third, the Higgs mass must also be known beforehand with a few-MeV accuracy in order to operate the collider at the resonance peak, s=mH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = m_\mathrm {H}$$\end{document}. Last but not least, the cross sections of the background processes are many orders-of-magnitude larger than those of the Higgs decay signals. A preliminary generator-level study of 11 Higgs decay channels using a multivariate analysis, which exploits boosted decision trees to discriminate signal and background events, identifies two final states as the most promising ones in terms of statistical significance: H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}\rightarrow gg$$\end{document} and H→WW∗→ℓν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}\rightarrow \mathrm {W}\mathrm {W}^*\!\rightarrow \ell \nu $$\end{document} + 2 jets. For a benchmark monochromatization with 4.1-MeV c.m. energy spread (leading to σee→H=0.28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\mathrm {ee\rightarrow H} = 0.28$$\end{document} fb) and 10 ab-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of integrated luminosity, a 1.3σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.3\sigma $$\end{document} signal significance can be reached, corresponding to an upper limit on the e±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\pm $$\end{document} Yukawa coupling at 1.6 times the SM value: |ye|<1.6|yeSM|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|y_\mathrm {e}|<1.6|y^\mathrm {\textsc {sm}}_\mathrm {e}|$$\end{document} at 95% confidence level, per FCC-ee interaction point per year. Directions for future improvements of the study are outlined.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N603d381ceb0f4781b2ddd16c0ff9009e
    25 N69111ad09e0d498f96a7d8da0c309c80
    26 sg:journal.1052877
    27 schema:keywords Ab
    28 C.
    29 Circular Collider
    30 Collider
    31 FCC-ee
    32 Future Circular Collider
    33 Higgs Yukawa
    34 Higgs boson
    35 Higgs decay channels
    36 Higgs decays
    37 Higgs mass
    38 Higgs production
    39 MeV
    40 SM Higgs boson
    41 SM values
    42 Standard Model background processes
    43 Yukawa
    44 accuracy
    45 analysis
    46 background events
    47 background processes
    48 beam
    49 beam luminosity
    50 bosons
    51 center
    52 channels
    53 confidence level
    54 coupling
    55 cross sections
    56 decay
    57 decay channels
    58 decay signal
    59 decision tree
    60 dedicated run
    61 direction
    62 electron Yukawa
    63 electrons
    64 energy
    65 energy spread
    66 events
    67 exchange
    68 expectations
    69 final state
    70 future improvements
    71 improvement
    72 integrated luminosity
    73 interaction point
    74 jet
    75 levels
    76 limit
    77 lower values
    78 luminosity
    79 magnitude
    80 main reason
    81 mass
    82 mass energy
    83 meV accuracy
    84 measurements
    85 monochromatization
    86 multivariate analysis
    87 narrow width
    88 occurrence
    89 one
    90 opportunities
    91 order
    92 particular final state
    93 peak
    94 point
    95 process
    96 production
    97 promising ones
    98 radiation
    99 reasons
    100 resonance peak
    101 rise
    102 run
    103 s-channel production
    104 sections
    105 signal significance
    106 signals
    107 signatures
    108 significance
    109 small cross section
    110 small rise
    111 spread
    112 state
    113 statistical significance
    114 study
    115 t-channel exchange
    116 terms
    117 time
    118 trees
    119 unique opportunity
    120 upper limit
    121 values
    122 width
    123 years
    124 schema:name Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee
    125 schema:pagination 201
    126 schema:productId Nb08d332f21c34277a7d021cdad67d38e
    127 Ndd36ed7ca76d468aa15e580a83d7a7ce
    128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145282108
    129 https://doi.org/10.1140/epjp/s13360-021-02204-2
    130 schema:sdDatePublished 2022-09-02T16:07
    131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    132 schema:sdPublisher Nfa553f63b5104ded908060317fa1a422
    133 schema:url https://doi.org/10.1140/epjp/s13360-021-02204-2
    134 sgo:license sg:explorer/license/
    135 sgo:sdDataset articles
    136 rdf:type schema:ScholarlyArticle
    137 N22270a46556c4cb698adbdb7fe4f726f rdf:first sg:person.016155013337.08
    138 rdf:rest Nfdb077dc6aec48c6bdf5cd852fb738ed
    139 N603d381ceb0f4781b2ddd16c0ff9009e schema:volumeNumber 137
    140 rdf:type schema:PublicationVolume
    141 N69111ad09e0d498f96a7d8da0c309c80 schema:issueNumber 2
    142 rdf:type schema:PublicationIssue
    143 N8548067f9d194850a7a2bd6ac7811980 rdf:first sg:person.016312771362.21
    144 rdf:rest N22270a46556c4cb698adbdb7fe4f726f
    145 Nb08d332f21c34277a7d021cdad67d38e schema:name dimensions_id
    146 schema:value pub.1145282108
    147 rdf:type schema:PropertyValue
    148 Ndd36ed7ca76d468aa15e580a83d7a7ce schema:name doi
    149 schema:value 10.1140/epjp/s13360-021-02204-2
    150 rdf:type schema:PropertyValue
    151 Nfa553f63b5104ded908060317fa1a422 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 Nfdb077dc6aec48c6bdf5cd852fb738ed rdf:first sg:person.07364766044.12
    154 rdf:rest rdf:nil
    155 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Physical Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Other Physical Sciences
    160 rdf:type schema:DefinedTerm
    161 sg:journal.1052877 schema:issn 2190-5444
    162 schema:name The European Physical Journal Plus
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.016155013337.08 schema:affiliation grid-institutes:grid.5252.0
    166 schema:familyName Poldaru
    167 schema:givenName Andres
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155013337.08
    169 rdf:type schema:Person
    170 sg:person.016312771362.21 schema:affiliation grid-institutes:grid.9132.9
    171 schema:familyName d’Enterria
    172 schema:givenName David
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312771362.21
    174 rdf:type schema:Person
    175 sg:person.07364766044.12 schema:affiliation grid-institutes:grid.445003.6
    176 schema:familyName Wojcik
    177 schema:givenName George
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364766044.12
    179 rdf:type schema:Person
    180 sg:pub.10.1007/jhep01(2014)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022665897
    181 https://doi.org/10.1007/jhep01(2014)164
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep04(2018)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103242299
    184 https://doi.org/10.1007/jhep04(2018)044
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep05(2015)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045799986
    187 https://doi.org/10.1007/jhep05(2015)125
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep07(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024796629
    190 https://doi.org/10.1007/jhep07(2014)079
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/jhep10(2015)146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053157974
    193 https://doi.org/10.1007/jhep10(2015)146
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/jhep12(2018)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110668227
    196 https://doi.org/10.1007/jhep12(2018)064
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/s42254-021-00341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139694254
    199 https://doi.org/10.1038/s42254-021-00341-2
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1140/epjc/s10052-011-1742-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033365813
    202 https://doi.org/10.1140/epjc/s10052-011-1742-y
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1140/epjc/s10052-012-1896-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009624676
    205 https://doi.org/10.1140/epjc/s10052-012-1896-2
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1140/epjc/s10052-019-6904-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116676785
    208 https://doi.org/10.1140/epjc/s10052-019-6904-3
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1140/epjc/s10052-021-09703-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142694383
    211 https://doi.org/10.1140/epjc/s10052-021-09703-7
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1140/epjp/s13360-021-01810-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140412488
    214 https://doi.org/10.1140/epjp/s13360-021-01810-4
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1140/epjp/s13360-021-02202-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143904608
    217 https://doi.org/10.1140/epjp/s13360-021-02202-4
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1140/epjst/e2019-900045-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116885146
    220 https://doi.org/10.1140/epjst/e2019-900045-4
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1140/epjst/e2019-900087-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117677916
    223 https://doi.org/10.1140/epjst/e2019-900087-0
    224 rdf:type schema:CreativeWork
    225 grid-institutes:grid.445003.6 schema:alternateName SLAC, 2575 Sand Hill Rd., 94025, Menlo Park, CA, USA
    226 schema:name SLAC, 2575 Sand Hill Rd., 94025, Menlo Park, CA, USA
    227 rdf:type schema:Organization
    228 grid-institutes:grid.5252.0 schema:alternateName LMU, 80539, Munich, Germany
    229 schema:name LMU, 80539, Munich, Germany
    230 rdf:type schema:Organization
    231 grid-institutes:grid.9132.9 schema:alternateName CERN, EP Department, 1211, Geneva, Switzerland
    232 schema:name CERN, EP Department, 1211, Geneva, Switzerland
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...