Comparison of selected general-purpose event generators for particle fluence simulation in LHC silicon trackers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-15

AUTHORS

Agnieszka Oblakowska-Mucha, Tomasz Szumlak

ABSTRACT

At the LHC era, the detector systems are operating at the harsh hadronic environment with the unprecedentedly high particle flux. Position-sensitive silicon devices are usually positioned at the innermost regions of the experimental setups and must cope with highly non-uniform radiation fields. At the end of LHC Run 2, fluence in silicon trackers reached 1015\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{15}$$\end{document} neq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{eq}}$$\end{document}/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}. Initial simulation studies predict that the maximal fluence for the HL-LHC may be up to two orders of magnitude higher than the one seen in LHC Run 1 and Run 2. In this paper, two general-purpose physics event generators used for simulation of proton–proton collisions for the radiation damage studies at LHC energies: PYTHIA 8.2 and Dpmjet-III are compared. Fluences obtained using these models, with the latest tuning to the LHC data, in detectors situated close to the proton–proton interaction point are determined as well. We also indicate a potential new method for actual fluence estimation using experiment real-time data monitoring system. More... »

PAGES

1036

References to SciGraph publications

  • 2016-04-11. Herwig 7.0/Herwig++ 3.0 release note in EUROPEAN PHYSICAL JOURNAL C
  • 2019-03-07. The physics and technology of the Future Circular Collider in NATURE REVIEWS PHYSICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2010-08-03. A comparison of new MC-adapted parton densities in EUROPEAN PHYSICAL JOURNAL C
  • 2019-06-05. FCC Physics Opportunities in EUROPEAN PHYSICAL JOURNAL C
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02012-8

    DOI

    http://dx.doi.org/10.1140/epjp/s13360-021-02012-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141920777


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland", 
              "id": "http://www.grid.ac/institutes/grid.9922.0", 
              "name": [
                "Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oblakowska-Mucha", 
            "givenName": "Agnieszka", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland", 
              "id": "http://www.grid.ac/institutes/grid.9922.0", 
              "name": [
                "Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szumlak", 
            "givenName": "Tomasz", 
            "id": "sg:person.01053134104.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053134104.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s42254-019-0048-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112605015", 
              "https://doi.org/10.1038/s42254-019-0048-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-016-4018-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024245855", 
              "https://doi.org/10.1140/epjc/s10052-016-4018-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-019-6904-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116676785", 
              "https://doi.org/10.1140/epjc/s10052-019-6904-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-010-1391-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014136700", 
              "https://doi.org/10.1140/epjc/s10052-010-1391-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-007-0239-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034535479", 
              "https://doi.org/10.1140/epjc/s10052-007-0239-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-15", 
        "datePublishedReg": "2021-10-15", 
        "description": "At the LHC era, the detector systems are operating at the harsh hadronic environment with the unprecedentedly high particle flux. Position-sensitive silicon devices are usually positioned at the innermost regions of the experimental setups and must cope with highly non-uniform radiation fields. At the end of LHC Run 2, fluence in silicon trackers reached 1015\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{15}$$\\end{document} neq\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{\\mathrm{eq}}$$\\end{document}/cm2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^2$$\\end{document}. Initial simulation studies predict that the maximal fluence for the HL-LHC may be up to two orders of magnitude higher than the one seen in LHC Run 1 and Run 2. In this paper, two general-purpose physics event generators used for simulation of proton\u2013proton collisions for the radiation damage studies at LHC energies: PYTHIA 8.2 and Dpmjet-III are compared. Fluences obtained using these models, with the latest tuning to the LHC data, in detectors situated close to the proton\u2013proton interaction point are determined as well. We also indicate a potential new method for actual fluence estimation using experiment real-time data monitoring system.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjp/s13360-021-02012-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7392079", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "keywords": [
          "silicon tracker", 
          "event generator", 
          "Run 2", 
          "general-purpose event generators", 
          "proton-proton collisions", 
          "radiation damage studies", 
          "LHC Run 2", 
          "LHC Run 1", 
          "non-uniform radiation fields", 
          "LHC energies", 
          "hadronic environment", 
          "LHC era", 
          "high particle fluxes", 
          "innermost regions", 
          "radiation field", 
          "maximal fluence", 
          "LHC data", 
          "particle flux", 
          "detector system", 
          "HL-LHC", 
          "PYTHIA 8.2", 
          "DPMJET-III", 
          "damage studies", 
          "interaction point", 
          "fluence", 
          "silicon devices", 
          "orders of magnitude", 
          "initial simulation study", 
          "Run 1", 
          "experimental setup", 
          "real-time data monitoring system", 
          "collisions", 
          "detector", 
          "energy", 
          "potential new method", 
          "simulations", 
          "setup", 
          "tuning", 
          "field", 
          "flux", 
          "devices", 
          "new method", 
          "tracker", 
          "magnitude", 
          "generator", 
          "system", 
          "region", 
          "simulation study", 
          "order", 
          "one", 
          "method", 
          "model", 
          "comparison", 
          "data", 
          "point", 
          "monitoring system", 
          "environment", 
          "study", 
          "paper", 
          "end", 
          "era", 
          "estimation", 
          "data monitoring system", 
          "harsh hadronic environment", 
          "unprecedentedly high particle flux", 
          "Position-sensitive silicon devices", 
          "general-purpose physics event generators", 
          "physics event generators", 
          "latest tuning", 
          "proton\u2013proton interaction point", 
          "actual fluence estimation", 
          "fluence estimation", 
          "experiment real-time data monitoring system", 
          "particle fluence simulation", 
          "fluence simulation", 
          "LHC silicon trackers"
        ], 
        "name": "Comparison of selected general-purpose event generators for particle fluence simulation in LHC silicon trackers", 
        "pagination": "1036", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141920777"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/s13360-021-02012-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/s13360-021-02012-8", 
          "https://app.dimensions.ai/details/publication/pub.1141920777"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjp/s13360-021-02012-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02012-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02012-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02012-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-02012-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      22 PREDICATES      106 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/s13360-021-02012-8 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N9374bbaccae6467087681dd00bf408a7
    4 schema:citation sg:pub.10.1038/s42254-019-0048-0
    5 sg:pub.10.1140/epjc/s10052-007-0239-1
    6 sg:pub.10.1140/epjc/s10052-010-1391-6
    7 sg:pub.10.1140/epjc/s10052-016-4018-8
    8 sg:pub.10.1140/epjc/s10052-019-6904-3
    9 schema:datePublished 2021-10-15
    10 schema:datePublishedReg 2021-10-15
    11 schema:description At the LHC era, the detector systems are operating at the harsh hadronic environment with the unprecedentedly high particle flux. Position-sensitive silicon devices are usually positioned at the innermost regions of the experimental setups and must cope with highly non-uniform radiation fields. At the end of LHC Run 2, fluence in silicon trackers reached 1015\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{15}$$\end{document} neq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\mathrm{eq}}$$\end{document}/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}. Initial simulation studies predict that the maximal fluence for the HL-LHC may be up to two orders of magnitude higher than the one seen in LHC Run 1 and Run 2. In this paper, two general-purpose physics event generators used for simulation of proton–proton collisions for the radiation damage studies at LHC energies: PYTHIA 8.2 and Dpmjet-III are compared. Fluences obtained using these models, with the latest tuning to the LHC data, in detectors situated close to the proton–proton interaction point are determined as well. We also indicate a potential new method for actual fluence estimation using experiment real-time data monitoring system.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N4aac7f49bb7748f8918ac6d3e031b123
    16 N4df52dccf01045cba6a1545f4d672105
    17 sg:journal.1052877
    18 schema:keywords DPMJET-III
    19 HL-LHC
    20 LHC Run 1
    21 LHC Run 2
    22 LHC data
    23 LHC energies
    24 LHC era
    25 LHC silicon trackers
    26 PYTHIA 8.2
    27 Position-sensitive silicon devices
    28 Run 1
    29 Run 2
    30 actual fluence estimation
    31 collisions
    32 comparison
    33 damage studies
    34 data
    35 data monitoring system
    36 detector
    37 detector system
    38 devices
    39 end
    40 energy
    41 environment
    42 era
    43 estimation
    44 event generator
    45 experiment real-time data monitoring system
    46 experimental setup
    47 field
    48 fluence
    49 fluence estimation
    50 fluence simulation
    51 flux
    52 general-purpose event generators
    53 general-purpose physics event generators
    54 generator
    55 hadronic environment
    56 harsh hadronic environment
    57 high particle fluxes
    58 initial simulation study
    59 innermost regions
    60 interaction point
    61 latest tuning
    62 magnitude
    63 maximal fluence
    64 method
    65 model
    66 monitoring system
    67 new method
    68 non-uniform radiation fields
    69 one
    70 order
    71 orders of magnitude
    72 paper
    73 particle fluence simulation
    74 particle flux
    75 physics event generators
    76 point
    77 potential new method
    78 proton-proton collisions
    79 proton–proton interaction point
    80 radiation damage studies
    81 radiation field
    82 real-time data monitoring system
    83 region
    84 setup
    85 silicon devices
    86 silicon tracker
    87 simulation study
    88 simulations
    89 study
    90 system
    91 tracker
    92 tuning
    93 unprecedentedly high particle flux
    94 schema:name Comparison of selected general-purpose event generators for particle fluence simulation in LHC silicon trackers
    95 schema:pagination 1036
    96 schema:productId N2a6830c6158944ccb0d6bff7cabb7f98
    97 Nf443c35753c8416fa414b6b9ef888e8f
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141920777
    99 https://doi.org/10.1140/epjp/s13360-021-02012-8
    100 schema:sdDatePublished 2022-01-01T18:59
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N0bb5ac07067e4ec0817661c97f53d665
    103 schema:url https://doi.org/10.1140/epjp/s13360-021-02012-8
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N0bb5ac07067e4ec0817661c97f53d665 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N1b553c5d82654905bede69e1ca85b09e schema:affiliation grid-institutes:grid.9922.0
    110 schema:familyName Oblakowska-Mucha
    111 schema:givenName Agnieszka
    112 rdf:type schema:Person
    113 N2a6830c6158944ccb0d6bff7cabb7f98 schema:name dimensions_id
    114 schema:value pub.1141920777
    115 rdf:type schema:PropertyValue
    116 N4aac7f49bb7748f8918ac6d3e031b123 schema:issueNumber 10
    117 rdf:type schema:PublicationIssue
    118 N4df52dccf01045cba6a1545f4d672105 schema:volumeNumber 136
    119 rdf:type schema:PublicationVolume
    120 N7088e0d570da4c22bc4c45260c465d3d rdf:first sg:person.01053134104.53
    121 rdf:rest rdf:nil
    122 N9374bbaccae6467087681dd00bf408a7 rdf:first N1b553c5d82654905bede69e1ca85b09e
    123 rdf:rest N7088e0d570da4c22bc4c45260c465d3d
    124 Nf443c35753c8416fa414b6b9ef888e8f schema:name doi
    125 schema:value 10.1140/epjp/s13360-021-02012-8
    126 rdf:type schema:PropertyValue
    127 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Other Physical Sciences
    132 rdf:type schema:DefinedTerm
    133 sg:grant.7392079 http://pending.schema.org/fundedItem sg:pub.10.1140/epjp/s13360-021-02012-8
    134 rdf:type schema:MonetaryGrant
    135 sg:journal.1052877 schema:issn 2190-5444
    136 schema:name The European Physical Journal Plus
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.01053134104.53 schema:affiliation grid-institutes:grid.9922.0
    140 schema:familyName Szumlak
    141 schema:givenName Tomasz
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053134104.53
    143 rdf:type schema:Person
    144 sg:pub.10.1038/s42254-019-0048-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112605015
    145 https://doi.org/10.1038/s42254-019-0048-0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1140/epjc/s10052-007-0239-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034535479
    148 https://doi.org/10.1140/epjc/s10052-007-0239-1
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1140/epjc/s10052-010-1391-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014136700
    151 https://doi.org/10.1140/epjc/s10052-010-1391-6
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1140/epjc/s10052-016-4018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245855
    154 https://doi.org/10.1140/epjc/s10052-016-4018-8
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1140/epjc/s10052-019-6904-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116676785
    157 https://doi.org/10.1140/epjc/s10052-019-6904-3
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.9922.0 schema:alternateName Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
    160 schema:name Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...