Bound states of a quartic and sextic inverse-power-law potential for all angular momenta View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-25

AUTHORS

A. D. Alhaidari, I. A. Assi, A. Mebirouk

ABSTRACT

We use the tridiagonal representation approach to solve the radial Schrödinger equation for an inverse-power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial. More... »

PAGES

443

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-01424-w

DOI

http://dx.doi.org/10.1140/epjp/s13360-021-01424-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137477864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saudi Center for Theoretical Physics, P.O. Box 32741, 21438, Jeddah, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.472654.6", 
          "name": [
            "Saudi Center for Theoretical Physics, P.O. Box 32741, 21438, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alhaidari", 
        "givenName": "A. D.", 
        "id": "sg:person.010122155242.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John\u2019s, NL, Canada", 
          "id": "http://www.grid.ac/institutes/grid.25055.37", 
          "name": [
            "Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John\u2019s, NL, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Assi", 
        "givenName": "I. A.", 
        "id": "sg:person.014632570217.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632570217.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematical Modeling and Numerical Simulation Laboratory, Badji Mokhtar University, BP 12, Annaba, Algeria", 
          "id": "http://www.grid.ac/institutes/grid.440473.0", 
          "name": [
            "Mathematical Modeling and Numerical Simulation Laboratory, Badji Mokhtar University, BP 12, Annaba, Algeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mebirouk", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjc/s10052-017-5362-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092754001", 
          "https://doi.org/10.1140/epjc/s10052-017-5362-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1003614810934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032177199", 
          "https://doi.org/10.1023/a:1003614810934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034353895", 
          "https://doi.org/10.1007/978-3-642-05014-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04-25", 
    "datePublishedReg": "2021-04-25", 
    "description": "We use the tridiagonal representation approach to solve the radial Schr\u00f6dinger equation for an inverse-power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjp/s13360-021-01424-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "keywords": [
      "angular momentum", 
      "square integrable functions", 
      "law potential", 
      "tridiagonal representation approach", 
      "radial Schr\u00f6dinger equation", 
      "Schr\u00f6dinger equation", 
      "finite number", 
      "integrable functions", 
      "Bessel polynomials", 
      "finite series", 
      "singularity amplitudes", 
      "momentum", 
      "representation approach", 
      "large ratio", 
      "equations", 
      "singularity", 
      "polynomials", 
      "sextics", 
      "amplitude", 
      "solution", 
      "state", 
      "terms", 
      "approach", 
      "function", 
      "system", 
      "number", 
      "potential", 
      "degree", 
      "series", 
      "ratio", 
      "signs"
    ], 
    "name": "Bound states of a quartic and sextic inverse-power-law potential for all angular momenta", 
    "pagination": "443", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1137477864"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/s13360-021-01424-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/s13360-021-01424-w", 
      "https://app.dimensions.ai/details/publication/pub.1137477864"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_875.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjp/s13360-021-01424-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-01424-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-01424-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-01424-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-021-01424-w'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/s13360-021-01424-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4b3ed4850e484044bbdd246a5549526c
4 schema:citation sg:pub.10.1007/978-3-642-05014-5
5 sg:pub.10.1023/a:1003614810934
6 sg:pub.10.1140/epjc/s10052-017-5362-z
7 schema:datePublished 2021-04-25
8 schema:datePublishedReg 2021-04-25
9 schema:description We use the tridiagonal representation approach to solve the radial Schrödinger equation for an inverse-power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nf55dc4be820f4ea99a5f7aa965f7fbb7
14 Nf9385c4631b2445d8b8b4ef47147d2ee
15 sg:journal.1052877
16 schema:keywords Bessel polynomials
17 Schrödinger equation
18 amplitude
19 angular momentum
20 approach
21 degree
22 equations
23 finite number
24 finite series
25 function
26 integrable functions
27 large ratio
28 law potential
29 momentum
30 number
31 polynomials
32 potential
33 radial Schrödinger equation
34 ratio
35 representation approach
36 series
37 sextics
38 signs
39 singularity
40 singularity amplitudes
41 solution
42 square integrable functions
43 state
44 system
45 terms
46 tridiagonal representation approach
47 schema:name Bound states of a quartic and sextic inverse-power-law potential for all angular momenta
48 schema:pagination 443
49 schema:productId N09b163f495474a9d86193e9014796ef4
50 Ndb3f0f37d7e34b3886dab0d27353086e
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137477864
52 https://doi.org/10.1140/epjp/s13360-021-01424-w
53 schema:sdDatePublished 2022-05-20T07:38
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N29be57ddf5ae46808ae81b1670a0a0bf
56 schema:url https://doi.org/10.1140/epjp/s13360-021-01424-w
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N09b163f495474a9d86193e9014796ef4 schema:name doi
61 schema:value 10.1140/epjp/s13360-021-01424-w
62 rdf:type schema:PropertyValue
63 N29be57ddf5ae46808ae81b1670a0a0bf schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N4b3ed4850e484044bbdd246a5549526c rdf:first sg:person.010122155242.02
66 rdf:rest N683c8001c9fd438ab9a0ad7ac0a494ef
67 N683c8001c9fd438ab9a0ad7ac0a494ef rdf:first sg:person.014632570217.11
68 rdf:rest N78de7b90534d478d8b8fb3df8b243848
69 N78de7b90534d478d8b8fb3df8b243848 rdf:first N899539ad7ca645a3a7f7da45ab46e579
70 rdf:rest rdf:nil
71 N899539ad7ca645a3a7f7da45ab46e579 schema:affiliation grid-institutes:grid.440473.0
72 schema:familyName Mebirouk
73 schema:givenName A.
74 rdf:type schema:Person
75 Ndb3f0f37d7e34b3886dab0d27353086e schema:name dimensions_id
76 schema:value pub.1137477864
77 rdf:type schema:PropertyValue
78 Nf55dc4be820f4ea99a5f7aa965f7fbb7 schema:volumeNumber 136
79 rdf:type schema:PublicationVolume
80 Nf9385c4631b2445d8b8b4ef47147d2ee schema:issueNumber 4
81 rdf:type schema:PublicationIssue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1052877 schema:issn 2190-5444
89 schema:name The European Physical Journal Plus
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.010122155242.02 schema:affiliation grid-institutes:grid.472654.6
93 schema:familyName Alhaidari
94 schema:givenName A. D.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02
96 rdf:type schema:Person
97 sg:person.014632570217.11 schema:affiliation grid-institutes:grid.25055.37
98 schema:familyName Assi
99 schema:givenName I. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632570217.11
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-642-05014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034353895
103 https://doi.org/10.1007/978-3-642-05014-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1003614810934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032177199
106 https://doi.org/10.1023/a:1003614810934
107 rdf:type schema:CreativeWork
108 sg:pub.10.1140/epjc/s10052-017-5362-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092754001
109 https://doi.org/10.1140/epjc/s10052-017-5362-z
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.25055.37 schema:alternateName Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John’s, NL, Canada
112 schema:name Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John’s, NL, Canada
113 rdf:type schema:Organization
114 grid-institutes:grid.440473.0 schema:alternateName Mathematical Modeling and Numerical Simulation Laboratory, Badji Mokhtar University, BP 12, Annaba, Algeria
115 schema:name Mathematical Modeling and Numerical Simulation Laboratory, Badji Mokhtar University, BP 12, Annaba, Algeria
116 rdf:type schema:Organization
117 grid-institutes:grid.472654.6 schema:alternateName Saudi Center for Theoretical Physics, P.O. Box 32741, 21438, Jeddah, Saudi Arabia
118 schema:name Saudi Center for Theoretical Physics, P.O. Box 32741, 21438, Jeddah, Saudi Arabia
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...