Derive the Born’s rule from environment-induced stochastic dynamics of wave functions in an open system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-20

AUTHORS

Pei Wang

ABSTRACT

The lack of superposition of different position states or the emergence of classicality in macroscopic systems has been a puzzle for decades. Classicality exists in every measuring apparatus and is the key for understanding what can be measured in quantum theory. Different theories have been proposed, including decoherence, einselection and the spontaneous wave-function collapse, with no consensus reached up to now. In this paper, we propose a stochastic dynamics for the wave function in an open system (e.g., the measuring apparatus) that interacts with its environment. The trajectory of wave function is random with a well-defined probability distribution. We show that the stochastic evolution results in the wave-function collapse and the Born’s rule for specific system–environment interactions, while it reproduces the unitary evolution governed by the Schrödinger equation when the interaction vanishes. Our results suggest that it is the way of system interacting with environment that determines whether quantum superposition dominates or classicality emerges. More... »

PAGES

927

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/s13360-020-00947-y

DOI

http://dx.doi.org/10.1140/epjp/s13360-020-00947-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132791694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Zhejiang Normal University, 321004, Jinhua, China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "Department of Physics, Zhejiang Normal University, 321004, Jinhua, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pei", 
        "id": "sg:person.0614252515.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjp/i2012-12014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030804641", 
          "https://doi.org/10.1140/epjp/i2012-12014-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00738299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647036", 
          "https://doi.org/10.1007/bf00738299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10701-018-0179-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104401566", 
          "https://doi.org/10.1007/s10701-018-0179-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00697324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674844", 
          "https://doi.org/10.1007/bf00697324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10701-016-0006-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044229964", 
          "https://doi.org/10.1007/s10701-016-0006-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00708656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022543084", 
          "https://doi.org/10.1007/bf00708656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033379422", 
          "https://doi.org/10.1038/nphys2863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/121580a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005815770", 
          "https://doi.org/10.1038/121580a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007913668", 
          "https://doi.org/10.1038/srep25277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10701-004-1941-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004245452", 
          "https://doi.org/10.1007/s10701-004-1941-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10701-018-0226-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110102118", 
          "https://doi.org/10.1007/s10701-018-0226-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00726936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033553519", 
          "https://doi.org/10.1007/bf00726936"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-11-20", 
    "datePublishedReg": "2020-11-20", 
    "description": "The lack of superposition of different position states or the emergence of classicality in macroscopic systems has been a puzzle for decades. Classicality exists in every measuring apparatus and is the key for understanding what can be measured in quantum theory. Different theories have been proposed, including decoherence, einselection and the spontaneous wave-function collapse, with no consensus reached up to now. In this paper, we propose a stochastic dynamics for the wave function in an open system (e.g., the measuring apparatus) that interacts with its environment. The trajectory of wave function is random with a well-defined probability distribution. We show that the stochastic evolution results in the wave-function collapse and the Born\u2019s rule for specific system\u2013environment interactions, while it reproduces the unitary evolution governed by the Schr\u00f6dinger equation when the interaction vanishes. Our results suggest that it is the way of system interacting with environment that determines whether quantum superposition dominates or classicality emerges.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjp/s13360-020-00947-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8133363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8894007", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "keywords": [
      "wave function collapse", 
      "stochastic dynamics", 
      "Born\u2019s rule", 
      "wave functions", 
      "spontaneous wave function collapse", 
      "way of system", 
      "emergence of classicality", 
      "system-environment interaction", 
      "Schr\u00f6dinger equation", 
      "unitary evolution", 
      "quantum theory", 
      "probability distribution", 
      "macroscopic systems", 
      "open system", 
      "position states", 
      "classicality", 
      "theory", 
      "dynamics", 
      "equations", 
      "decoherence", 
      "einselection", 
      "different theories", 
      "evolution results", 
      "lack of superposition", 
      "superposition", 
      "system", 
      "function", 
      "rules", 
      "trajectories", 
      "distribution", 
      "results", 
      "dominates", 
      "collapse", 
      "evolution", 
      "state", 
      "interaction", 
      "puzzle", 
      "emerge", 
      "way", 
      "environment", 
      "consensus", 
      "emergence", 
      "key", 
      "apparatus", 
      "decades", 
      "understanding", 
      "lack", 
      "paper", 
      "different position states", 
      "stochastic evolution results", 
      "specific system\u2013environment interactions", 
      "quantum superposition dominates", 
      "superposition dominates", 
      "classicality emerges", 
      "environment-induced stochastic dynamics"
    ], 
    "name": "Derive the Born\u2019s rule from environment-induced stochastic dynamics of wave functions in an open system", 
    "pagination": "927", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132791694"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/s13360-020-00947-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/s13360-020-00947-y", 
      "https://app.dimensions.ai/details/publication/pub.1132791694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_859.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjp/s13360-020-00947-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-020-00947-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-020-00947-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-020-00947-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/s13360-020-00947-y'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      92 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/s13360-020-00947-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N889007225bc74331aa96a6ece9798705
4 schema:citation sg:pub.10.1007/bf00697324
5 sg:pub.10.1007/bf00708656
6 sg:pub.10.1007/bf00726936
7 sg:pub.10.1007/bf00738299
8 sg:pub.10.1007/s10701-004-1941-6
9 sg:pub.10.1007/s10701-016-0006-y
10 sg:pub.10.1007/s10701-018-0179-7
11 sg:pub.10.1007/s10701-018-0226-4
12 sg:pub.10.1038/121580a0
13 sg:pub.10.1038/nphys2863
14 sg:pub.10.1038/srep25277
15 sg:pub.10.1140/epjp/i2012-12014-2
16 schema:datePublished 2020-11-20
17 schema:datePublishedReg 2020-11-20
18 schema:description The lack of superposition of different position states or the emergence of classicality in macroscopic systems has been a puzzle for decades. Classicality exists in every measuring apparatus and is the key for understanding what can be measured in quantum theory. Different theories have been proposed, including decoherence, einselection and the spontaneous wave-function collapse, with no consensus reached up to now. In this paper, we propose a stochastic dynamics for the wave function in an open system (e.g., the measuring apparatus) that interacts with its environment. The trajectory of wave function is random with a well-defined probability distribution. We show that the stochastic evolution results in the wave-function collapse and the Born’s rule for specific system–environment interactions, while it reproduces the unitary evolution governed by the Schrödinger equation when the interaction vanishes. Our results suggest that it is the way of system interacting with environment that determines whether quantum superposition dominates or classicality emerges.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N5d1505911888499e8bb51dce90aab9b5
23 Ne213c0eda6914fbf89d04caa93f96a3b
24 sg:journal.1052877
25 schema:keywords Born’s rule
26 Schrödinger equation
27 apparatus
28 classicality
29 classicality emerges
30 collapse
31 consensus
32 decades
33 decoherence
34 different position states
35 different theories
36 distribution
37 dominates
38 dynamics
39 einselection
40 emerge
41 emergence
42 emergence of classicality
43 environment
44 environment-induced stochastic dynamics
45 equations
46 evolution
47 evolution results
48 function
49 interaction
50 key
51 lack
52 lack of superposition
53 macroscopic systems
54 open system
55 paper
56 position states
57 probability distribution
58 puzzle
59 quantum superposition dominates
60 quantum theory
61 results
62 rules
63 specific system–environment interactions
64 spontaneous wave function collapse
65 state
66 stochastic dynamics
67 stochastic evolution results
68 superposition
69 superposition dominates
70 system
71 system-environment interaction
72 theory
73 trajectories
74 understanding
75 unitary evolution
76 wave function collapse
77 wave functions
78 way
79 way of system
80 schema:name Derive the Born’s rule from environment-induced stochastic dynamics of wave functions in an open system
81 schema:pagination 927
82 schema:productId Nc656f05ce12d4cc394c3b9cfbc191dde
83 Nd43af05882f34f0ea4d35a98ac72769f
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132791694
85 https://doi.org/10.1140/epjp/s13360-020-00947-y
86 schema:sdDatePublished 2022-01-01T18:57
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N39f526d4d7df4590b5cab479e8b361d5
89 schema:url https://doi.org/10.1140/epjp/s13360-020-00947-y
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N39f526d4d7df4590b5cab479e8b361d5 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N5d1505911888499e8bb51dce90aab9b5 schema:issueNumber 11
96 rdf:type schema:PublicationIssue
97 N889007225bc74331aa96a6ece9798705 rdf:first sg:person.0614252515.34
98 rdf:rest rdf:nil
99 Nc656f05ce12d4cc394c3b9cfbc191dde schema:name doi
100 schema:value 10.1140/epjp/s13360-020-00947-y
101 rdf:type schema:PropertyValue
102 Nd43af05882f34f0ea4d35a98ac72769f schema:name dimensions_id
103 schema:value pub.1132791694
104 rdf:type schema:PropertyValue
105 Ne213c0eda6914fbf89d04caa93f96a3b schema:volumeNumber 135
106 rdf:type schema:PublicationVolume
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
111 schema:name Statistics
112 rdf:type schema:DefinedTerm
113 sg:grant.8133363 http://pending.schema.org/fundedItem sg:pub.10.1140/epjp/s13360-020-00947-y
114 rdf:type schema:MonetaryGrant
115 sg:grant.8894007 http://pending.schema.org/fundedItem sg:pub.10.1140/epjp/s13360-020-00947-y
116 rdf:type schema:MonetaryGrant
117 sg:journal.1052877 schema:issn 2190-5444
118 schema:name The European Physical Journal Plus
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.0614252515.34 schema:affiliation grid-institutes:grid.453534.0
122 schema:familyName Wang
123 schema:givenName Pei
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34
125 rdf:type schema:Person
126 sg:pub.10.1007/bf00697324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674844
127 https://doi.org/10.1007/bf00697324
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00708656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022543084
130 https://doi.org/10.1007/bf00708656
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00726936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033553519
133 https://doi.org/10.1007/bf00726936
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00738299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647036
136 https://doi.org/10.1007/bf00738299
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10701-004-1941-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004245452
139 https://doi.org/10.1007/s10701-004-1941-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10701-016-0006-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044229964
142 https://doi.org/10.1007/s10701-016-0006-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10701-018-0179-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104401566
145 https://doi.org/10.1007/s10701-018-0179-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10701-018-0226-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110102118
148 https://doi.org/10.1007/s10701-018-0226-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/121580a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005815770
151 https://doi.org/10.1038/121580a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphys2863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033379422
154 https://doi.org/10.1038/nphys2863
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep25277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007913668
157 https://doi.org/10.1038/srep25277
158 rdf:type schema:CreativeWork
159 sg:pub.10.1140/epjp/i2012-12014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030804641
160 https://doi.org/10.1140/epjp/i2012-12014-2
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.453534.0 schema:alternateName Department of Physics, Zhejiang Normal University, 321004, Jinhua, China
163 schema:name Department of Physics, Zhejiang Normal University, 321004, Jinhua, China
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...