Singular limit in a nonlinear quantum field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-11-15

AUTHORS

Gilbert Reinisch

ABSTRACT

.The self-consistent mean-fied Schrödinger-Poisson model of quantum-dot helium is described in the mixed-state approximation of a two-level nonlinear quantum system (G. Reinisch, M. Gazeau, Eur. Phys. J. Plus 131, 220 (2016)). We investigate the strong nonlinear limit of vanishing harmonic confinement. We find that the two corresponding trajectories in the appropriate phase-space bifurcate from the Thomas-Fermi fixed point to a final singular statistical equilibrium state that is defined by equal population of the two energy levels as a result of eigenstate overlap ∼1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sim 1/\sqrt{2}$\end{document} between their respective nonlinear eigenstates. Further increase of nonlinearity, i.e. of eigenstate overlap, yields population inversion and therefore instability. At equilibrium, a black-body residual photon field is set up when considering the single-photon lowest-order QED description of the Coulomb interaction between the two electrons. We point out the possible interest of such an equilibrium state in the search of the Cooper-pair “pairing glue” of bound electron pairs in the degenerate Fermi gas of high-temperature superconductors, as well as its link with a recently renewed debate about the physical existence of QED mediating virtual photons (G. Jaeger, Entropy 21, 141 (2019)). More... »

PAGES

573

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/i2019-12967-4

DOI

http://dx.doi.org/10.1140/epjp/i2019-12967-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122598201


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland", 
          "id": "http://www.grid.ac/institutes/grid.14013.37", 
          "name": [
            "Universit\u00e9 de la C\u00f4te d\u2019Azur - Observatoire de la C\u00f4te d\u2019Azur, 06304, Nice Cedex, France", 
            "Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reinisch", 
        "givenName": "Gilbert", 
        "id": "sg:person.014114452675.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114452675.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2011-20725-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035163772", 
          "https://doi.org/10.1140/epjb/e2011-20725-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2015-60389-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036522045", 
          "https://doi.org/10.1140/epjd/e2015-60389-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007963108", 
          "https://doi.org/10.1038/nphys254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16220-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017874590", 
          "https://doi.org/10.1140/epjp/i2016-16220-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81448-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040826880", 
          "https://doi.org/10.1007/978-3-642-81448-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-11-15", 
    "datePublishedReg": "2019-11-15", 
    "description": "Abstract.The self-consistent mean-fied Schr\u00f6dinger-Poisson model of quantum-dot helium is described in the mixed-state approximation of a two-level nonlinear quantum system (G. Reinisch, M. Gazeau, Eur. Phys. J. Plus 131, 220 (2016)). We investigate the strong nonlinear limit of vanishing harmonic confinement. We find that the two corresponding trajectories in the appropriate phase-space bifurcate from the Thomas-Fermi fixed point to a final singular statistical equilibrium state that is defined by equal population of the two energy levels as a result of eigenstate overlap \u223c1/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\sim 1/\\sqrt{2}$\\end{document} between their respective nonlinear eigenstates. Further increase of nonlinearity, i.e. of eigenstate overlap, yields population inversion and therefore instability. At equilibrium, a black-body residual photon field is set up when considering the single-photon lowest-order QED description of the Coulomb interaction between the two electrons. We point out the possible interest of such an equilibrium state in the search of the Cooper-pair \u201cpairing glue\u201d of bound electron pairs in the degenerate Fermi gas of high-temperature superconductors, as well as its link with a recently renewed debate about the physical existence of QED mediating virtual photons (G. Jaeger, Entropy 21, 141 (2019)).", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjp/i2019-12967-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "keywords": [
      "quantum-dot helium", 
      "Bound Electron Pairs", 
      "degenerate Fermi gas", 
      "nonlinear quantum fields", 
      "nonlinear quantum systems", 
      "statistical equilibrium state", 
      "high-temperature superconductors", 
      "equilibrium state", 
      "Schr\u00f6dinger-Poisson model", 
      "nonlinear eigenstates", 
      "population inversion", 
      "photon field", 
      "Fermi gas", 
      "quantum systems", 
      "quantum fields", 
      "harmonic confinement", 
      "Cooper pairs", 
      "virtual photons", 
      "Thomas-Fermi", 
      "Coulomb interaction", 
      "singular limit", 
      "nonlinear limit", 
      "electron pairs", 
      "energy levels", 
      "equal populations", 
      "physical existence", 
      "photons", 
      "electrons", 
      "QED", 
      "helium", 
      "eigenstates", 
      "superconductors", 
      "field", 
      "confinement", 
      "approximation", 
      "possible interest", 
      "nonlinearity", 
      "state", 
      "limit", 
      "gas", 
      "bifurcates", 
      "trajectories", 
      "inversion", 
      "existence", 
      "instability", 
      "description", 
      "equilibrium", 
      "model", 
      "further increase", 
      "overlap", 
      "interaction", 
      "point", 
      "pairs", 
      "system", 
      "search", 
      "results", 
      "interest", 
      "link", 
      "increase", 
      "glue", 
      "levels", 
      "population", 
      "debate", 
      "self-consistent mean-fied Schr\u00f6dinger-Poisson model", 
      "mean-fied Schr\u00f6dinger-Poisson model", 
      "mixed-state approximation", 
      "two-level nonlinear quantum system", 
      "strong nonlinear limit", 
      "appropriate phase-space bifurcate", 
      "phase-space bifurcate", 
      "final singular statistical equilibrium state", 
      "singular statistical equilibrium state", 
      "eigenstate overlap", 
      "respective nonlinear eigenstates", 
      "yields population inversion", 
      "black-body residual photon field", 
      "residual photon field", 
      "single-photon lowest-order QED description", 
      "lowest-order QED description", 
      "QED description"
    ], 
    "name": "Singular limit in a nonlinear quantum field", 
    "pagination": "573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122598201"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/i2019-12967-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/i2019-12967-4", 
      "https://app.dimensions.ai/details/publication/pub.1122598201"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_830.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjp/i2019-12967-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2019-12967-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2019-12967-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2019-12967-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2019-12967-4'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      110 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/i2019-12967-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na94359df269b4e5aacebbf8e44530921
4 schema:citation sg:pub.10.1007/978-3-642-81448-8
5 sg:pub.10.1038/nphys254
6 sg:pub.10.1140/epjb/e2011-20725-5
7 sg:pub.10.1140/epjd/e2015-60389-7
8 sg:pub.10.1140/epjp/i2016-16220-6
9 schema:datePublished 2019-11-15
10 schema:datePublishedReg 2019-11-15
11 schema:description Abstract.The self-consistent mean-fied Schrödinger-Poisson model of quantum-dot helium is described in the mixed-state approximation of a two-level nonlinear quantum system (G. Reinisch, M. Gazeau, Eur. Phys. J. Plus 131, 220 (2016)). We investigate the strong nonlinear limit of vanishing harmonic confinement. We find that the two corresponding trajectories in the appropriate phase-space bifurcate from the Thomas-Fermi fixed point to a final singular statistical equilibrium state that is defined by equal population of the two energy levels as a result of eigenstate overlap ∼1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sim 1/\sqrt{2}$\end{document} between their respective nonlinear eigenstates. Further increase of nonlinearity, i.e. of eigenstate overlap, yields population inversion and therefore instability. At equilibrium, a black-body residual photon field is set up when considering the single-photon lowest-order QED description of the Coulomb interaction between the two electrons. We point out the possible interest of such an equilibrium state in the search of the Cooper-pair “pairing glue” of bound electron pairs in the degenerate Fermi gas of high-temperature superconductors, as well as its link with a recently renewed debate about the physical existence of QED mediating virtual photons (G. Jaeger, Entropy 21, 141 (2019)).
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0b6473c164ac4e4d825b52cf2c0b8bbb
16 N248d50c59ed8437388c741114c6bbe90
17 sg:journal.1052877
18 schema:keywords Bound Electron Pairs
19 Cooper pairs
20 Coulomb interaction
21 Fermi gas
22 QED
23 QED description
24 Schrödinger-Poisson model
25 Thomas-Fermi
26 appropriate phase-space bifurcate
27 approximation
28 bifurcates
29 black-body residual photon field
30 confinement
31 debate
32 degenerate Fermi gas
33 description
34 eigenstate overlap
35 eigenstates
36 electron pairs
37 electrons
38 energy levels
39 equal populations
40 equilibrium
41 equilibrium state
42 existence
43 field
44 final singular statistical equilibrium state
45 further increase
46 gas
47 glue
48 harmonic confinement
49 helium
50 high-temperature superconductors
51 increase
52 instability
53 interaction
54 interest
55 inversion
56 levels
57 limit
58 link
59 lowest-order QED description
60 mean-fied Schrödinger-Poisson model
61 mixed-state approximation
62 model
63 nonlinear eigenstates
64 nonlinear limit
65 nonlinear quantum fields
66 nonlinear quantum systems
67 nonlinearity
68 overlap
69 pairs
70 phase-space bifurcate
71 photon field
72 photons
73 physical existence
74 point
75 population
76 population inversion
77 possible interest
78 quantum fields
79 quantum systems
80 quantum-dot helium
81 residual photon field
82 respective nonlinear eigenstates
83 results
84 search
85 self-consistent mean-fied Schrödinger-Poisson model
86 single-photon lowest-order QED description
87 singular limit
88 singular statistical equilibrium state
89 state
90 statistical equilibrium state
91 strong nonlinear limit
92 superconductors
93 system
94 trajectories
95 two-level nonlinear quantum system
96 virtual photons
97 yields population inversion
98 schema:name Singular limit in a nonlinear quantum field
99 schema:pagination 573
100 schema:productId N51c35602527041a88a8146ba5a22f9e8
101 N7b12b614a7064ce3a40621882d2a4ac2
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122598201
103 https://doi.org/10.1140/epjp/i2019-12967-4
104 schema:sdDatePublished 2022-01-01T18:55
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nc95af38e924e4183af8d9550d7c9424c
107 schema:url https://doi.org/10.1140/epjp/i2019-12967-4
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0b6473c164ac4e4d825b52cf2c0b8bbb schema:volumeNumber 134
112 rdf:type schema:PublicationVolume
113 N248d50c59ed8437388c741114c6bbe90 schema:issueNumber 11
114 rdf:type schema:PublicationIssue
115 N51c35602527041a88a8146ba5a22f9e8 schema:name dimensions_id
116 schema:value pub.1122598201
117 rdf:type schema:PropertyValue
118 N7b12b614a7064ce3a40621882d2a4ac2 schema:name doi
119 schema:value 10.1140/epjp/i2019-12967-4
120 rdf:type schema:PropertyValue
121 Na94359df269b4e5aacebbf8e44530921 rdf:first sg:person.014114452675.28
122 rdf:rest rdf:nil
123 Nc95af38e924e4183af8d9550d7c9424c schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
130 rdf:type schema:DefinedTerm
131 sg:journal.1052877 schema:issn 2190-5444
132 schema:name The European Physical Journal Plus
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.014114452675.28 schema:affiliation grid-institutes:grid.14013.37
136 schema:familyName Reinisch
137 schema:givenName Gilbert
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114452675.28
139 rdf:type schema:Person
140 sg:pub.10.1007/978-3-642-81448-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040826880
141 https://doi.org/10.1007/978-3-642-81448-8
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007963108
144 https://doi.org/10.1038/nphys254
145 rdf:type schema:CreativeWork
146 sg:pub.10.1140/epjb/e2011-20725-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035163772
147 https://doi.org/10.1140/epjb/e2011-20725-5
148 rdf:type schema:CreativeWork
149 sg:pub.10.1140/epjd/e2015-60389-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036522045
150 https://doi.org/10.1140/epjd/e2015-60389-7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1140/epjp/i2016-16220-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017874590
153 https://doi.org/10.1140/epjp/i2016-16220-6
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.14013.37 schema:alternateName Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
156 schema:name Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
157 Université de la Côte d’Azur - Observatoire de la Côte d’Azur, 06304, Nice Cedex, France
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...