Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Abderrahim Wakif, Zoubair Boulahia, S. R. Mishra, Mohammad Mehdi Rashidi, Rachid Sehaqui

ABSTRACT

The onset of nanofluid convection in the presence of an externally applied magnetic field is investigated numerically based on the non-homogeneous Buongiorno’s mathematical model. In this study, we use the latest experimental correlations and powerful analytical models for expressing the thermo-physical properties of some electrically conducting nanofluids, such as copper-water, sliver-water and gold-water nanofluids, in which the Brownian motion and thermophoresis effects on slip flow in nanofluids are taken into account in this model (i.e., two-phase transport model). In this paper, we assume that the nanofluid has Newtonian behavior, confined horizontally between two infinite impermeable boundaries and heated from below, in such a way that the nanoparticles tend to concentrate near the upper wall. Considering the basic state of the nanofluidic system, the linear stability theory has been successfully applied to obtain the principal stability equations, which are solved numerically for an imposed volumetric fraction of nanoparticles and no-slip impermeable conditions at the isothermal walls bounding the nanofluid layer. The linear boundary-value problem obtained in this investigation is converted into a pure initial-value problem, so that we can solve it numerically by the fourth-fifth-order Runge-Kutta-Fehlberg method. The generalized Buongiorno’s mathematical model proposed in this study allows performing a highly accurate computational analysis. In addition, the obtained results show that the stability of the studied nanofluidic system depends on several parameters, namely, the magnetic Chandrasekhar number Q , the reference value for the volumetric fraction of nanoparticles ϕ0 and the size of nanoparticles dp . In this analysis, the thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical thermal Rayleigh number Rac , which characterizes the onset of convection cells, whose size is Lc=2π/ac . Furthermore, the effects of various pertinent parameters on the critical stability parameters Rac and ac are discussed in more detail through graphical and tabular illustrations, for three types of nanofluids including copper-water, sliver-water, and gold-water. More... »

PAGES

181

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/i2018-12037-7

DOI

http://dx.doi.org/10.1140/epjp/i2018-12037-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103904523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Hassan II University, Faculty of Sciences A\u00efn Chock, Laboratory of Mechanics, B.P.5366, M\u00e2arif, Casablanca, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wakif", 
        "givenName": "Abderrahim", 
        "id": "sg:person.016707241747.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707241747.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hassan II University, Faculty of Sciences A\u00efn Chock, Laboratory of Mechanics, B.P.5366, M\u00e2arif, Casablanca, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boulahia", 
        "givenName": "Zoubair", 
        "id": "sg:person.013615207257.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615207257.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siksha O Anusandhan University", 
          "id": "https://www.grid.ac/institutes/grid.412612.2", 
          "name": [
            "Department of Mathematics, Siksha \u2018O\u2019Anusandhan University, 751030, Bhubaneswar, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "S. R.", 
        "id": "sg:person.011023112461.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023112461.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "University of Birmingham, School of Civil Engineering, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehdi Rashidi", 
        "givenName": "Mohammad", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hassan II University, Faculty of Sciences A\u00efn Chock, Laboratory of Mechanics, B.P.5366, M\u00e2arif, Casablanca, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sehaqui", 
        "givenName": "Rachid", 
        "id": "sg:person.011252674037.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011252674037.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002922328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-011-9806-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010905442", 
          "https://doi.org/10.1007/s11242-011-9806-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.07.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011339965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2016.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014905233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10665-012-9598-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023140364", 
          "https://doi.org/10.1007/s10665-012-9598-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026334105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(73)90225-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028108497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40819-015-0106-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036276963", 
          "https://doi.org/10.1007/s40819-015-0106-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2015.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036411245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1904.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038775400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2010.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039564675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2013.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042355911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042522989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2015-15162-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043773619", 
          "https://doi.org/10.1140/epjp/i2015-15162-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20141609003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4034484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062159761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jon.2017.1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063394863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14569/ijacsa.2016.070841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067340170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083899895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.03.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084096721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2017.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085929619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100896044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100896044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100896044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2018.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100896044"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "The onset of nanofluid convection in the presence of an externally applied magnetic field is investigated numerically based on the non-homogeneous Buongiorno\u2019s mathematical model. In this study, we use the latest experimental correlations and powerful analytical models for expressing the thermo-physical properties of some electrically conducting nanofluids, such as copper-water, sliver-water and gold-water nanofluids, in which the Brownian motion and thermophoresis effects on slip flow in nanofluids are taken into account in this model (i.e., two-phase transport model). In this paper, we assume that the nanofluid has Newtonian behavior, confined horizontally between two infinite impermeable boundaries and heated from below, in such a way that the nanoparticles tend to concentrate near the upper wall. Considering the basic state of the nanofluidic system, the linear stability theory has been successfully applied to obtain the principal stability equations, which are solved numerically for an imposed volumetric fraction of nanoparticles and no-slip impermeable conditions at the isothermal walls bounding the nanofluid layer. The linear boundary-value problem obtained in this investigation is converted into a pure initial-value problem, so that we can solve it numerically by the fourth-fifth-order Runge-Kutta-Fehlberg method. The generalized Buongiorno\u2019s mathematical model proposed in this study allows performing a highly accurate computational analysis. In addition, the obtained results show that the stability of the studied nanofluidic system depends on several parameters, namely, the magnetic Chandrasekhar number Q , the reference value for the volumetric fraction of nanoparticles \u03d50 and the size of nanoparticles dp . In this analysis, the thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical thermal Rayleigh number Rac , which characterizes the onset of convection cells, whose size is Lc=2\u03c0/ac . Furthermore, the effects of various pertinent parameters on the critical stability parameters Rac and ac are discussed in more detail through graphical and tabular illustrations, for three types of nanofluids including copper-water, sliver-water, and gold-water.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjp/i2018-12037-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno\u2019s mathematical model", 
    "pagination": "181", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62fde2345c319f2a6ff1a66e106908e4c91aed69897505c500d68a1c8cc37f86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/i2018-12037-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103904523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/i2018-12037-7", 
      "https://app.dimensions.ai/details/publication/pub.1103904523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjp%2Fi2018-12037-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-12037-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-12037-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-12037-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-12037-7'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/i2018-12037-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nccfab870cc504531abf10ace2b1a1ed5
4 schema:citation sg:pub.10.1007/s10665-012-9598-1
5 sg:pub.10.1007/s11242-011-9806-x
6 sg:pub.10.1007/s40819-015-0106-y
7 sg:pub.10.1140/epjp/i2015-15162-9
8 https://doi.org/10.1016/0021-9797(73)90225-7
9 https://doi.org/10.1016/j.applthermaleng.2016.05.039
10 https://doi.org/10.1016/j.compfluid.2015.07.024
11 https://doi.org/10.1016/j.enconman.2010.06.072
12 https://doi.org/10.1016/j.euromechflu.2010.02.003
13 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.117
14 https://doi.org/10.1016/j.ijthermalsci.2016.08.009
15 https://doi.org/10.1016/j.jtice.2013.09.018
16 https://doi.org/10.1016/j.molliq.2016.07.103
17 https://doi.org/10.1016/j.molliq.2017.03.080
18 https://doi.org/10.1016/j.rinp.2017.06.003
19 https://doi.org/10.1016/j.rinp.2018.01.066
20 https://doi.org/10.1051/matecconf/20141609003
21 https://doi.org/10.1098/rsta.1904.0024
22 https://doi.org/10.1115/1.2150834
23 https://doi.org/10.1115/1.4034484
24 https://doi.org/10.1118/1.597854
25 https://doi.org/10.1166/jon.2017.1293
26 https://doi.org/10.14569/ijacsa.2016.070841
27 schema:datePublished 2018-05
28 schema:datePublishedReg 2018-05-01
29 schema:description The onset of nanofluid convection in the presence of an externally applied magnetic field is investigated numerically based on the non-homogeneous Buongiorno’s mathematical model. In this study, we use the latest experimental correlations and powerful analytical models for expressing the thermo-physical properties of some electrically conducting nanofluids, such as copper-water, sliver-water and gold-water nanofluids, in which the Brownian motion and thermophoresis effects on slip flow in nanofluids are taken into account in this model (i.e., two-phase transport model). In this paper, we assume that the nanofluid has Newtonian behavior, confined horizontally between two infinite impermeable boundaries and heated from below, in such a way that the nanoparticles tend to concentrate near the upper wall. Considering the basic state of the nanofluidic system, the linear stability theory has been successfully applied to obtain the principal stability equations, which are solved numerically for an imposed volumetric fraction of nanoparticles and no-slip impermeable conditions at the isothermal walls bounding the nanofluid layer. The linear boundary-value problem obtained in this investigation is converted into a pure initial-value problem, so that we can solve it numerically by the fourth-fifth-order Runge-Kutta-Fehlberg method. The generalized Buongiorno’s mathematical model proposed in this study allows performing a highly accurate computational analysis. In addition, the obtained results show that the stability of the studied nanofluidic system depends on several parameters, namely, the magnetic Chandrasekhar number Q , the reference value for the volumetric fraction of nanoparticles ϕ0 and the size of nanoparticles dp . In this analysis, the thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical thermal Rayleigh number Rac , which characterizes the onset of convection cells, whose size is Lc=2π/ac . Furthermore, the effects of various pertinent parameters on the critical stability parameters Rac and ac are discussed in more detail through graphical and tabular illustrations, for three types of nanofluids including copper-water, sliver-water, and gold-water.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N06daea33b99f4bf3880a413eb49d9457
34 Nd80cfef62a8a45aab60f670285b239dc
35 sg:journal.1052877
36 schema:name Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model
37 schema:pagination 181
38 schema:productId Nb7d936159c1d4849b043c49288328c0c
39 Ne1c7f7706a4b4b1494430a58224bbfcd
40 Nfa6509ed44894ecb99505c0b3eb00ee2
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103904523
42 https://doi.org/10.1140/epjp/i2018-12037-7
43 schema:sdDatePublished 2019-04-11T12:12
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N8ed90c7256d0429caad205d8f8dd1380
46 schema:url https://link.springer.com/10.1140%2Fepjp%2Fi2018-12037-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N06daea33b99f4bf3880a413eb49d9457 schema:issueNumber 5
51 rdf:type schema:PublicationIssue
52 N0a49f55c28814d0096a2cf0e945e23a7 rdf:first sg:person.016573246311.03
53 rdf:rest N848b0ac4fd02436f9ac101dadad2aa2e
54 N656cd417303a4b89a35098e6b41fc493 schema:name Hassan II University, Faculty of Sciences Aïn Chock, Laboratory of Mechanics, B.P.5366, Mâarif, Casablanca, Morocco
55 rdf:type schema:Organization
56 N848b0ac4fd02436f9ac101dadad2aa2e rdf:first sg:person.011252674037.25
57 rdf:rest rdf:nil
58 N8ed90c7256d0429caad205d8f8dd1380 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N90a0f0a89f604346b4f4db6eb9d346fa schema:name Hassan II University, Faculty of Sciences Aïn Chock, Laboratory of Mechanics, B.P.5366, Mâarif, Casablanca, Morocco
61 rdf:type schema:Organization
62 N980cf70b94f843cfa87727855dc2f005 rdf:first sg:person.013615207257.91
63 rdf:rest Ne33862e790594aecbe390bb404a18718
64 Nb7d936159c1d4849b043c49288328c0c schema:name readcube_id
65 schema:value 62fde2345c319f2a6ff1a66e106908e4c91aed69897505c500d68a1c8cc37f86
66 rdf:type schema:PropertyValue
67 Nccfab870cc504531abf10ace2b1a1ed5 rdf:first sg:person.016707241747.40
68 rdf:rest N980cf70b94f843cfa87727855dc2f005
69 Nce84f01941ed42bca42af190e4574f4a schema:name Hassan II University, Faculty of Sciences Aïn Chock, Laboratory of Mechanics, B.P.5366, Mâarif, Casablanca, Morocco
70 rdf:type schema:Organization
71 Nd80cfef62a8a45aab60f670285b239dc schema:volumeNumber 133
72 rdf:type schema:PublicationVolume
73 Ne1c7f7706a4b4b1494430a58224bbfcd schema:name doi
74 schema:value 10.1140/epjp/i2018-12037-7
75 rdf:type schema:PropertyValue
76 Ne33862e790594aecbe390bb404a18718 rdf:first sg:person.011023112461.06
77 rdf:rest N0a49f55c28814d0096a2cf0e945e23a7
78 Nfa6509ed44894ecb99505c0b3eb00ee2 schema:name dimensions_id
79 schema:value pub.1103904523
80 rdf:type schema:PropertyValue
81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
82 schema:name Chemical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Chemistry (incl. Structural)
86 rdf:type schema:DefinedTerm
87 sg:journal.1052877 schema:issn 2190-5444
88 schema:name The European Physical Journal Plus
89 rdf:type schema:Periodical
90 sg:person.011023112461.06 schema:affiliation https://www.grid.ac/institutes/grid.412612.2
91 schema:familyName Mishra
92 schema:givenName S. R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023112461.06
94 rdf:type schema:Person
95 sg:person.011252674037.25 schema:affiliation N656cd417303a4b89a35098e6b41fc493
96 schema:familyName Sehaqui
97 schema:givenName Rachid
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011252674037.25
99 rdf:type schema:Person
100 sg:person.013615207257.91 schema:affiliation Nce84f01941ed42bca42af190e4574f4a
101 schema:familyName Boulahia
102 schema:givenName Zoubair
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615207257.91
104 rdf:type schema:Person
105 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
106 schema:familyName Mehdi Rashidi
107 schema:givenName Mohammad
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
109 rdf:type schema:Person
110 sg:person.016707241747.40 schema:affiliation N90a0f0a89f604346b4f4db6eb9d346fa
111 schema:familyName Wakif
112 schema:givenName Abderrahim
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707241747.40
114 rdf:type schema:Person
115 sg:pub.10.1007/s10665-012-9598-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023140364
116 https://doi.org/10.1007/s10665-012-9598-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11242-011-9806-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010905442
119 https://doi.org/10.1007/s11242-011-9806-x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40819-015-0106-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036276963
122 https://doi.org/10.1007/s40819-015-0106-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1140/epjp/i2015-15162-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043773619
125 https://doi.org/10.1140/epjp/i2015-15162-9
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0021-9797(73)90225-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028108497
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.applthermaleng.2016.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002922328
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.compfluid.2015.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036411245
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.enconman.2010.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042522989
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.euromechflu.2010.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039564675
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083899895
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijthermalsci.2016.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014905233
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jtice.2013.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042355911
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.molliq.2016.07.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011339965
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.molliq.2017.03.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084096721
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.rinp.2017.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085929619
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.rinp.2018.01.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100896044
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1051/matecconf/20141609003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033828
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1098/rsta.1904.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038775400
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/1.4034484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062159761
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1118/1.597854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334105
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1166/jon.2017.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063394863
162 rdf:type schema:CreativeWork
163 https://doi.org/10.14569/ijacsa.2016.070841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067340170
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.412612.2 schema:alternateName Siksha O Anusandhan University
166 schema:name Department of Mathematics, Siksha ‘O’Anusandhan University, 751030, Bhubaneswar, Odisha, India
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
169 schema:name University of Birmingham, School of Civil Engineering, Birmingham, UK
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...