A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02-22

AUTHORS

Devendra Kumar, Jagdev Singh, Dumitru Baleanu

ABSTRACT

.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order. More... »

PAGES

70

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y

DOI

http://dx.doi.org/10.1140/epjp/i2018-11934-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101133640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India", 
          "id": "http://www.grid.ac/institutes/grid.449403.e", 
          "name": [
            "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Devendra", 
        "id": "sg:person.011254343143.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254343143.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India", 
          "id": "http://www.grid.ac/institutes/grid.449403.e", 
          "name": [
            "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Jagdev", 
        "id": "sg:person.014641371023.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Space Sciences, Magurele, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.435167.2", 
          "name": [
            "Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 29. Km, Yukar\u0131yurtcu Mahallesi Mimar Sinan Caddesi No: 4 06790, Etimesgut, Turkey", 
            "Institute of Space Sciences, Magurele, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baleanu", 
        "givenName": "Dumitru", 
        "id": "sg:person.01217763631.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10957-017-1186-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092556564", 
          "https://doi.org/10.1007/s10957-017-1186-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13662-017-1139-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252686", 
          "https://doi.org/10.1186/s13662-017-1139-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8289-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029030517", 
          "https://doi.org/10.1007/978-94-015-8289-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-22", 
    "datePublishedReg": "2018-02-22", 
    "description": "Abstract.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjp/i2018-11934-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "keywords": [
      "Fornberg\u2013Whitham equation", 
      "Mittag-Leffler type kernel", 
      "fractional order", 
      "Laplace decomposition algorithm", 
      "Mittag-Leffler type functions", 
      "dispersive water waves", 
      "non-singular kernel", 
      "non-linear problems", 
      "mathematical physics", 
      "fractional derivative", 
      "numerical solution", 
      "mathematical model", 
      "fractional extension", 
      "form of graphs", 
      "water waves", 
      "equations", 
      "decomposition algorithm", 
      "decomposition technique", 
      "numerical outcomes", 
      "reliable scheme", 
      "wave breaking", 
      "order model", 
      "breaking", 
      "solution", 
      "kernel", 
      "recent theories", 
      "such type", 
      "physics", 
      "new analysis", 
      "uniqueness", 
      "memory effect", 
      "graph", 
      "model", 
      "theory", 
      "waves", 
      "scheme", 
      "algorithm", 
      "problem", 
      "existence", 
      "extension", 
      "order", 
      "present article", 
      "function", 
      "technique", 
      "derivatives", 
      "form", 
      "table", 
      "results", 
      "aid", 
      "analysis", 
      "types", 
      "article", 
      "effect", 
      "differentiation", 
      "outcomes"
    ], 
    "name": "A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel", 
    "pagination": "70", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101133640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/i2018-11934-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/i2018-11934-y", 
      "https://app.dimensions.ai/details/publication/pub.1101133640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjp/i2018-11934-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/i2018-11934-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N94f85fd77df1467b947bb58b037b45c8
4 schema:citation sg:pub.10.1007/978-94-015-8289-6
5 sg:pub.10.1007/s10957-017-1186-0
6 sg:pub.10.1186/s13662-017-1139-9
7 schema:datePublished 2018-02-22
8 schema:datePublishedReg 2018-02-22
9 schema:description Abstract.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N014cd9fdc8754181975388735a117dd9
14 Nf703f8faaf31494eaa1995241bd2a17e
15 sg:journal.1052877
16 schema:keywords Fornberg–Whitham equation
17 Laplace decomposition algorithm
18 Mittag-Leffler type functions
19 Mittag-Leffler type kernel
20 aid
21 algorithm
22 analysis
23 article
24 breaking
25 decomposition algorithm
26 decomposition technique
27 derivatives
28 differentiation
29 dispersive water waves
30 effect
31 equations
32 existence
33 extension
34 form
35 form of graphs
36 fractional derivative
37 fractional extension
38 fractional order
39 function
40 graph
41 kernel
42 mathematical model
43 mathematical physics
44 memory effect
45 model
46 new analysis
47 non-linear problems
48 non-singular kernel
49 numerical outcomes
50 numerical solution
51 order
52 order model
53 outcomes
54 physics
55 present article
56 problem
57 recent theories
58 reliable scheme
59 results
60 scheme
61 solution
62 such type
63 table
64 technique
65 theory
66 types
67 uniqueness
68 water waves
69 wave breaking
70 waves
71 schema:name A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel
72 schema:pagination 70
73 schema:productId N9a5109bb5f134b39b4e325c9d3b8a846
74 Nec5b4bbdc7c84f5783f7ff713810c1ef
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101133640
76 https://doi.org/10.1140/epjp/i2018-11934-y
77 schema:sdDatePublished 2022-06-01T22:17
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Ndf3bd209808a4a4fbf4a3a91c4accb9f
80 schema:url https://doi.org/10.1140/epjp/i2018-11934-y
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N014cd9fdc8754181975388735a117dd9 schema:issueNumber 2
85 rdf:type schema:PublicationIssue
86 N3f27f61b2c1a444db4e3d11a2e3a49b8 rdf:first sg:person.014641371023.49
87 rdf:rest N5f47cf932e074625bdca970496e9b278
88 N5f47cf932e074625bdca970496e9b278 rdf:first sg:person.01217763631.11
89 rdf:rest rdf:nil
90 N94f85fd77df1467b947bb58b037b45c8 rdf:first sg:person.011254343143.37
91 rdf:rest N3f27f61b2c1a444db4e3d11a2e3a49b8
92 N9a5109bb5f134b39b4e325c9d3b8a846 schema:name dimensions_id
93 schema:value pub.1101133640
94 rdf:type schema:PropertyValue
95 Ndf3bd209808a4a4fbf4a3a91c4accb9f schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nec5b4bbdc7c84f5783f7ff713810c1ef schema:name doi
98 schema:value 10.1140/epjp/i2018-11934-y
99 rdf:type schema:PropertyValue
100 Nf703f8faaf31494eaa1995241bd2a17e schema:volumeNumber 133
101 rdf:type schema:PublicationVolume
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
106 schema:name Pure Mathematics
107 rdf:type schema:DefinedTerm
108 sg:journal.1052877 schema:issn 2190-5444
109 schema:name The European Physical Journal Plus
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.011254343143.37 schema:affiliation grid-institutes:grid.449403.e
113 schema:familyName Kumar
114 schema:givenName Devendra
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254343143.37
116 rdf:type schema:Person
117 sg:person.01217763631.11 schema:affiliation grid-institutes:grid.435167.2
118 schema:familyName Baleanu
119 schema:givenName Dumitru
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11
121 rdf:type schema:Person
122 sg:person.014641371023.49 schema:affiliation grid-institutes:grid.449403.e
123 schema:familyName Singh
124 schema:givenName Jagdev
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49
126 rdf:type schema:Person
127 sg:pub.10.1007/978-94-015-8289-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029030517
128 https://doi.org/10.1007/978-94-015-8289-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10957-017-1186-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092556564
131 https://doi.org/10.1007/s10957-017-1186-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s13662-017-1139-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252686
134 https://doi.org/10.1186/s13662-017-1139-9
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.435167.2 schema:alternateName Institute of Space Sciences, Magurele, Bucharest, Romania
137 schema:name Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 29. Km, Yukarıyurtcu Mahallesi Mimar Sinan Caddesi No: 4 06790, Etimesgut, Turkey
138 Institute of Space Sciences, Magurele, Bucharest, Romania
139 rdf:type schema:Organization
140 grid-institutes:grid.449403.e schema:alternateName Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India
141 schema:name Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...