Ontology type: schema:ScholarlyArticle
2018-02-22
AUTHORSDevendra Kumar, Jagdev Singh, Dumitru Baleanu
ABSTRACT.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order. More... »
PAGES70
http://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y
DOIhttp://dx.doi.org/10.1140/epjp/i2018-11934-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101133640
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India",
"id": "http://www.grid.ac/institutes/grid.449403.e",
"name": [
"Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Devendra",
"id": "sg:person.011254343143.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254343143.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India",
"id": "http://www.grid.ac/institutes/grid.449403.e",
"name": [
"Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "Jagdev",
"id": "sg:person.014641371023.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Space Sciences, Magurele, Bucharest, Romania",
"id": "http://www.grid.ac/institutes/grid.435167.2",
"name": [
"Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 29. Km, Yukar\u0131yurtcu Mahallesi Mimar Sinan Caddesi No: 4 06790, Etimesgut, Turkey",
"Institute of Space Sciences, Magurele, Bucharest, Romania"
],
"type": "Organization"
},
"familyName": "Baleanu",
"givenName": "Dumitru",
"id": "sg:person.01217763631.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10957-017-1186-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092556564",
"https://doi.org/10.1007/s10957-017-1186-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13662-017-1139-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084252686",
"https://doi.org/10.1186/s13662-017-1139-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-8289-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029030517",
"https://doi.org/10.1007/978-94-015-8289-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-02-22",
"datePublishedReg": "2018-02-22",
"description": "Abstract.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.",
"genre": "article",
"id": "sg:pub.10.1140/epjp/i2018-11934-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052877",
"issn": [
"2190-5444"
],
"name": "The European Physical Journal Plus",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "133"
}
],
"keywords": [
"Fornberg\u2013Whitham equation",
"Mittag-Leffler type kernel",
"fractional order",
"Laplace decomposition algorithm",
"Mittag-Leffler type functions",
"dispersive water waves",
"non-singular kernel",
"non-linear problems",
"mathematical physics",
"fractional derivative",
"numerical solution",
"mathematical model",
"fractional extension",
"form of graphs",
"water waves",
"equations",
"decomposition algorithm",
"decomposition technique",
"numerical outcomes",
"reliable scheme",
"wave breaking",
"order model",
"breaking",
"solution",
"kernel",
"recent theories",
"such type",
"physics",
"new analysis",
"uniqueness",
"memory effect",
"graph",
"model",
"theory",
"waves",
"scheme",
"algorithm",
"problem",
"existence",
"extension",
"order",
"present article",
"function",
"technique",
"derivatives",
"form",
"table",
"results",
"aid",
"analysis",
"types",
"article",
"effect",
"differentiation",
"outcomes"
],
"name": "A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel",
"pagination": "70",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101133640"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjp/i2018-11934-y"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjp/i2018-11934-y",
"https://app.dimensions.ai/details/publication/pub.1101133640"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_764.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjp/i2018-11934-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2018-11934-y'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
22 PREDICATES
82 URIs
71 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjp/i2018-11934-y | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N94f85fd77df1467b947bb58b037b45c8 |
4 | ″ | schema:citation | sg:pub.10.1007/978-94-015-8289-6 |
5 | ″ | ″ | sg:pub.10.1007/s10957-017-1186-0 |
6 | ″ | ″ | sg:pub.10.1186/s13662-017-1139-9 |
7 | ″ | schema:datePublished | 2018-02-22 |
8 | ″ | schema:datePublishedReg | 2018-02-22 |
9 | ″ | schema:description | Abstract.The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N014cd9fdc8754181975388735a117dd9 |
14 | ″ | ″ | Nf703f8faaf31494eaa1995241bd2a17e |
15 | ″ | ″ | sg:journal.1052877 |
16 | ″ | schema:keywords | Fornberg–Whitham equation |
17 | ″ | ″ | Laplace decomposition algorithm |
18 | ″ | ″ | Mittag-Leffler type functions |
19 | ″ | ″ | Mittag-Leffler type kernel |
20 | ″ | ″ | aid |
21 | ″ | ″ | algorithm |
22 | ″ | ″ | analysis |
23 | ″ | ″ | article |
24 | ″ | ″ | breaking |
25 | ″ | ″ | decomposition algorithm |
26 | ″ | ″ | decomposition technique |
27 | ″ | ″ | derivatives |
28 | ″ | ″ | differentiation |
29 | ″ | ″ | dispersive water waves |
30 | ″ | ″ | effect |
31 | ″ | ″ | equations |
32 | ″ | ″ | existence |
33 | ″ | ″ | extension |
34 | ″ | ″ | form |
35 | ″ | ″ | form of graphs |
36 | ″ | ″ | fractional derivative |
37 | ″ | ″ | fractional extension |
38 | ″ | ″ | fractional order |
39 | ″ | ″ | function |
40 | ″ | ″ | graph |
41 | ″ | ″ | kernel |
42 | ″ | ″ | mathematical model |
43 | ″ | ″ | mathematical physics |
44 | ″ | ″ | memory effect |
45 | ″ | ″ | model |
46 | ″ | ″ | new analysis |
47 | ″ | ″ | non-linear problems |
48 | ″ | ″ | non-singular kernel |
49 | ″ | ″ | numerical outcomes |
50 | ″ | ″ | numerical solution |
51 | ″ | ″ | order |
52 | ″ | ″ | order model |
53 | ″ | ″ | outcomes |
54 | ″ | ″ | physics |
55 | ″ | ″ | present article |
56 | ″ | ″ | problem |
57 | ″ | ″ | recent theories |
58 | ″ | ″ | reliable scheme |
59 | ″ | ″ | results |
60 | ″ | ″ | scheme |
61 | ″ | ″ | solution |
62 | ″ | ″ | such type |
63 | ″ | ″ | table |
64 | ″ | ″ | technique |
65 | ″ | ″ | theory |
66 | ″ | ″ | types |
67 | ″ | ″ | uniqueness |
68 | ″ | ″ | water waves |
69 | ″ | ″ | wave breaking |
70 | ″ | ″ | waves |
71 | ″ | schema:name | A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel |
72 | ″ | schema:pagination | 70 |
73 | ″ | schema:productId | N9a5109bb5f134b39b4e325c9d3b8a846 |
74 | ″ | ″ | Nec5b4bbdc7c84f5783f7ff713810c1ef |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1101133640 |
76 | ″ | ″ | https://doi.org/10.1140/epjp/i2018-11934-y |
77 | ″ | schema:sdDatePublished | 2022-06-01T22:17 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | Ndf3bd209808a4a4fbf4a3a91c4accb9f |
80 | ″ | schema:url | https://doi.org/10.1140/epjp/i2018-11934-y |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N014cd9fdc8754181975388735a117dd9 | schema:issueNumber | 2 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | N3f27f61b2c1a444db4e3d11a2e3a49b8 | rdf:first | sg:person.014641371023.49 |
87 | ″ | rdf:rest | N5f47cf932e074625bdca970496e9b278 |
88 | N5f47cf932e074625bdca970496e9b278 | rdf:first | sg:person.01217763631.11 |
89 | ″ | rdf:rest | rdf:nil |
90 | N94f85fd77df1467b947bb58b037b45c8 | rdf:first | sg:person.011254343143.37 |
91 | ″ | rdf:rest | N3f27f61b2c1a444db4e3d11a2e3a49b8 |
92 | N9a5109bb5f134b39b4e325c9d3b8a846 | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1101133640 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Ndf3bd209808a4a4fbf4a3a91c4accb9f | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | Nec5b4bbdc7c84f5783f7ff713810c1ef | schema:name | doi |
98 | ″ | schema:value | 10.1140/epjp/i2018-11934-y |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Nf703f8faaf31494eaa1995241bd2a17e | schema:volumeNumber | 133 |
101 | ″ | rdf:type | schema:PublicationVolume |
102 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Mathematical Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Pure Mathematics |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1052877 | schema:issn | 2190-5444 |
109 | ″ | schema:name | The European Physical Journal Plus |
110 | ″ | schema:publisher | Springer Nature |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.011254343143.37 | schema:affiliation | grid-institutes:grid.449403.e |
113 | ″ | schema:familyName | Kumar |
114 | ″ | schema:givenName | Devendra |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254343143.37 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.01217763631.11 | schema:affiliation | grid-institutes:grid.435167.2 |
118 | ″ | schema:familyName | Baleanu |
119 | ″ | schema:givenName | Dumitru |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217763631.11 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.014641371023.49 | schema:affiliation | grid-institutes:grid.449403.e |
123 | ″ | schema:familyName | Singh |
124 | ″ | schema:givenName | Jagdev |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641371023.49 |
126 | ″ | rdf:type | schema:Person |
127 | sg:pub.10.1007/978-94-015-8289-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029030517 |
128 | ″ | ″ | https://doi.org/10.1007/978-94-015-8289-6 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s10957-017-1186-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092556564 |
131 | ″ | ″ | https://doi.org/10.1007/s10957-017-1186-0 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1186/s13662-017-1139-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084252686 |
134 | ″ | ″ | https://doi.org/10.1186/s13662-017-1139-9 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | grid-institutes:grid.435167.2 | schema:alternateName | Institute of Space Sciences, Magurele, Bucharest, Romania |
137 | ″ | schema:name | Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 29. Km, Yukarıyurtcu Mahallesi Mimar Sinan Caddesi No: 4 06790, Etimesgut, Turkey |
138 | ″ | ″ | Institute of Space Sciences, Magurele, Bucharest, Romania |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.449403.e | schema:alternateName | Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India |
141 | ″ | schema:name | Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India |
142 | ″ | rdf:type | schema:Organization |