Dry unit weight of compacted soils prediction using GMDH-type neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

Mahmoud Hassanlourad, Alireza Ardakani, Afshin Kordnaeij, Hossein Mola-Abasi

ABSTRACT

Dry unit weight ( γd of soils is usually determined by in situ tests, such as rubber balloon, sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has been broadly used to determine various geotechnical parameters. In the present paper, the polynomial neural network (NN) is used to estimate the γd of compacted soils indirectly depending on P -wave velocity ( Vp , moisture content ( ω and plasticity index (PI as well as fine-grained particles (FC). Eight natural soil samples (88 data) were applied for developing a polynomial representation of model. To determine the performance of the proposed model, a comparison was carried out between the predicted and experimentally measured values. The results show that the developed GMDH-type NN has a great ability (R2=0.942) to predict the γd of the compacted soils and is more efficient (53% to 73% improvement) than the previous reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect of each input variable on the proposed model output and shows that the P -wave velocity is the most influential parameter on the predicted γd . More... »

PAGES

357

References to SciGraph publications

  • 2017-06. Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites in NEURAL COMPUTING AND APPLICATIONS
  • 2013-09. Empirical Correlations for Predicting Strength Properties of Rocks from P-Wave Velocity Under Different Degrees of Saturation in ROCK MECHANICS AND ROCK ENGINEERING
  • 2009-03. Estimation of soil compaction parameters by using statistical analyses and artificial neural networks in ENVIRONMENTAL GEOLOGY
  • 2016-04. Prediction of Compaction Characteristics of Fine-Grained Soils Using Consistency Limits in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • 2016-07. Use of neural networks for the prediction of the CBR value of some Aegean sands in NEURAL COMPUTING AND APPLICATIONS
  • 2017-12. Compressibility indices of saturated clays by group method of data handling and genetic algorithms in NEURAL COMPUTING AND APPLICATIONS
  • 2013-04. Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • 2008-02. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-04. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2017-12. The use of neural networks for the prediction of cone penetration resistance of silty sands in NEURAL COMPUTING AND APPLICATIONS
  • 2013-08. Predicting the Shear Behavior of Cemented and Uncemented Carbonate Sands Using a Genetic Algorithm-Based Artificial Neural Network in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2012-04. An Empirical Correlation of Index Geomechanical Parameters with the Compressional Wave Velocity in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2018-02. Pressuremeter Modulus and Limit Pressure of Clayey Soils Using GMDH-Type Neural Network and Genetic Algorithms in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2015-10. Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine in ACTA GEOTECHNICA
  • 2008-02. Artificial Neural Network Prediction Models for Soil Compaction and Permeability in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2011-11. Correlating Wave Velocities with Physical, Mechanical Properties and Petrographic Characteristics of Peridotites from the Central Greece in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2011-01. A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity in INTERNATIONAL JOURNAL OF EARTH SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/i2017-11623-5

    DOI

    http://dx.doi.org/10.1140/epjp/i2017-11623-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091231219


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Imam Khomeini International University", 
              "id": "https://www.grid.ac/institutes/grid.411537.5", 
              "name": [
                "Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hassanlourad", 
            "givenName": "Mahmoud", 
            "id": "sg:person.011153157667.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153157667.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imam Khomeini International University", 
              "id": "https://www.grid.ac/institutes/grid.411537.5", 
              "name": [
                "Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ardakani", 
            "givenName": "Alireza", 
            "id": "sg:person.016155226340.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155226340.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imam Khomeini International University", 
              "id": "https://www.grid.ac/institutes/grid.411537.5", 
              "name": [
                "Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kordnaeij", 
            "givenName": "Afshin", 
            "id": "sg:person.012576751412.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576751412.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Civil Engineering, Gonbadekavous University, Gonbadekavous, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mola-Abasi", 
            "givenName": "Hossein", 
            "id": "sg:person.011470773747.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470773747.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.coldregions.2009.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001289532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/t10-040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002067978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ultras.2007.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002440232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11440-014-0316-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004014708", 
              "https://doi.org/10.1007/s11440-014-0316-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-1943-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005382147", 
              "https://doi.org/10.1007/s00521-015-1943-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2014.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005383256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jafrearsci.2015.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006673312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2013.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007106171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-008-1300-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008234664", 
              "https://doi.org/10.1007/s00254-008-1300-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-008-1300-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008234664", 
              "https://doi.org/10.1007/s00254-008-1300-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jpln.200800233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008415791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jpln.200800233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008415791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-012-0353-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009614187", 
              "https://doi.org/10.1007/s00603-012-0353-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2371-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009805492", 
              "https://doi.org/10.1007/s00521-016-2371-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2371-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009805492", 
              "https://doi.org/10.1007/s00521-016-2371-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-013-9646-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010290216", 
              "https://doi.org/10.1007/s10706-013-9646-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-007-0109-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013717643", 
              "https://doi.org/10.1007/s10064-007-0109-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-007-0109-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013717643", 
              "https://doi.org/10.1007/s10064-007-0109-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compgeo.2013.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015729255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2011.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017141760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-007-9146-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019845262", 
              "https://doi.org/10.1007/s10706-007-9146-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0266-352x(95)00030-e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024286530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2478.2011.00951.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026613645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-011-9481-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031064241", 
              "https://doi.org/10.1007/s10706-011-9481-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2390-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031280796", 
              "https://doi.org/10.1007/s00521-016-2390-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2390-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031280796", 
              "https://doi.org/10.1007/s00521-016-2390-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2016-16108-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033270626", 
              "https://doi.org/10.1140/epjp/i2016-16108-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-015-1918-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035906990", 
              "https://doi.org/10.1007/s13369-015-1918-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-015-1918-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035906990", 
              "https://doi.org/10.1007/s13369-015-1918-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00531-009-0506-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036151088", 
              "https://doi.org/10.1007/s00531-009-0506-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sandf.2015.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036554254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-2159-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038564613", 
              "https://doi.org/10.1007/s00521-015-2159-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-2159-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038564613", 
              "https://doi.org/10.1007/s00521-015-2159-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jct.2010.05.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040641576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2014.01.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-011-9436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044121457", 
              "https://doi.org/10.1007/s10706-011-9436-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/t04-102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046610186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3208/sandf.44.5_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048946631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2014.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049715552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-012-0525-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050129450", 
              "https://doi.org/10.1007/s13369-012-0525-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5937/mmeb1304001d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050367769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9410(1996)122:4(302)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057588240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057617972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)gm.1943-5622.0000299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057631430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)gm.1943-5622.0000509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057631640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)gt.1943-5606.0000022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057632012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)he.1943-5584.0001085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057634663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1971.4308320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.1997.47.2.363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068210793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/1873-0604.2013046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071814095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/1873-0604.2013046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071814095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19648189.2017.1304269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084169471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-017-0314-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091054625", 
              "https://doi.org/10.1007/s10706-017-0314-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-017-0314-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091054625", 
              "https://doi.org/10.1007/s10706-017-0314-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/40510(287)5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097139941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/41041(348)22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097223963"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08", 
        "datePublishedReg": "2017-08-01", 
        "description": "Dry unit weight ( \u03b3d of soils is usually determined by in situ tests, such as rubber balloon, sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has been broadly used to determine various geotechnical parameters. In the present paper, the polynomial neural network (NN) is used to estimate the \u03b3d of compacted soils indirectly depending on P -wave velocity ( Vp , moisture content ( \u03c9 and plasticity index (PI as well as fine-grained particles (FC). Eight natural soil samples (88 data) were applied for developing a polynomial representation of model. To determine the performance of the proposed model, a comparison was carried out between the predicted and experimentally measured values. The results show that the developed GMDH-type NN has a great ability (R2=0.942) to predict the \u03b3d of the compacted soils and is more efficient (53% to 73% improvement) than the previous reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect of each input variable on the proposed model output and shows that the P -wave velocity is the most influential parameter on the predicted \u03b3d .", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjp/i2017-11623-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "name": "Dry unit weight of compacted soils prediction using GMDH-type neural network", 
        "pagination": "357", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "69dee30eaa00f71894d9a5eb08381cab9dbac731f117984c8a7ec3dc96dba3ce"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/i2017-11623-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091231219"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/i2017-11623-5", 
          "https://app.dimensions.ai/details/publication/pub.1091231219"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1140%2Fepjp%2Fi2017-11623-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11623-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11623-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11623-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11623-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    241 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/i2017-11623-5 schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N82bc06a0560744d6ab56275930836e89
    4 schema:citation sg:pub.10.1007/s00254-008-1300-6
    5 sg:pub.10.1007/s00521-015-1943-7
    6 sg:pub.10.1007/s00521-015-2159-6
    7 sg:pub.10.1007/s00521-016-2371-z
    8 sg:pub.10.1007/s00521-016-2390-9
    9 sg:pub.10.1007/s00531-009-0506-5
    10 sg:pub.10.1007/s00603-012-0353-8
    11 sg:pub.10.1007/s10064-007-0109-y
    12 sg:pub.10.1007/s10706-007-9146-3
    13 sg:pub.10.1007/s10706-011-9436-7
    14 sg:pub.10.1007/s10706-011-9481-2
    15 sg:pub.10.1007/s10706-013-9646-2
    16 sg:pub.10.1007/s10706-017-0314-9
    17 sg:pub.10.1007/s11440-014-0316-1
    18 sg:pub.10.1007/s13369-012-0525-6
    19 sg:pub.10.1007/s13369-015-1918-0
    20 sg:pub.10.1140/epjp/i2016-16108-5
    21 https://doi.org/10.1002/jpln.200800233
    22 https://doi.org/10.1016/0266-352x(95)00030-e
    23 https://doi.org/10.1016/j.asoc.2014.01.033
    24 https://doi.org/10.1016/j.coldregions.2009.05.008
    25 https://doi.org/10.1016/j.compgeo.2013.08.010
    26 https://doi.org/10.1016/j.engappai.2011.02.008
    27 https://doi.org/10.1016/j.engappai.2013.04.007
    28 https://doi.org/10.1016/j.engappai.2014.03.012
    29 https://doi.org/10.1016/j.jafrearsci.2015.07.016
    30 https://doi.org/10.1016/j.jct.2010.05.018
    31 https://doi.org/10.1016/j.measurement.2014.08.007
    32 https://doi.org/10.1016/j.sandf.2015.10.001
    33 https://doi.org/10.1016/j.ultras.2007.05.003
    34 https://doi.org/10.1061/(asce)0733-9410(1996)122:4(302)
    35 https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907)
    36 https://doi.org/10.1061/(asce)gm.1943-5622.0000299
    37 https://doi.org/10.1061/(asce)gm.1943-5622.0000509
    38 https://doi.org/10.1061/(asce)gt.1943-5606.0000022
    39 https://doi.org/10.1061/(asce)he.1943-5584.0001085
    40 https://doi.org/10.1061/40510(287)5
    41 https://doi.org/10.1061/41041(348)22
    42 https://doi.org/10.1080/19648189.2017.1304269
    43 https://doi.org/10.1109/tsmc.1971.4308320
    44 https://doi.org/10.1111/j.1365-2478.2011.00951.x
    45 https://doi.org/10.1139/t04-102
    46 https://doi.org/10.1139/t10-040
    47 https://doi.org/10.1680/geot.1997.47.2.363
    48 https://doi.org/10.3208/sandf.44.5_27
    49 https://doi.org/10.3997/1873-0604.2013046
    50 https://doi.org/10.5937/mmeb1304001d
    51 schema:datePublished 2017-08
    52 schema:datePublishedReg 2017-08-01
    53 schema:description Dry unit weight ( γd of soils is usually determined by in situ tests, such as rubber balloon, sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has been broadly used to determine various geotechnical parameters. In the present paper, the polynomial neural network (NN) is used to estimate the γd of compacted soils indirectly depending on P -wave velocity ( Vp , moisture content ( ω and plasticity index (PI as well as fine-grained particles (FC). Eight natural soil samples (88 data) were applied for developing a polynomial representation of model. To determine the performance of the proposed model, a comparison was carried out between the predicted and experimentally measured values. The results show that the developed GMDH-type NN has a great ability (R2=0.942) to predict the γd of the compacted soils and is more efficient (53% to 73% improvement) than the previous reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect of each input variable on the proposed model output and shows that the P -wave velocity is the most influential parameter on the predicted γd .
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N485e07b62b7a49d8a1ceffe145ff6125
    58 Nd988203dbf74430789fac60e41895429
    59 sg:journal.1052877
    60 schema:name Dry unit weight of compacted soils prediction using GMDH-type neural network
    61 schema:pagination 357
    62 schema:productId N00afb3d3eac3426fa4c0dd1cc0d65518
    63 N7b0e9cb6affd4c7c9d1f1468946ccf52
    64 Nc1c9fa57dea84ecb8cb3168bfa279b06
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091231219
    66 https://doi.org/10.1140/epjp/i2017-11623-5
    67 schema:sdDatePublished 2019-04-11T09:55
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N61b0f80cc41347aa91994087d4a6f42c
    70 schema:url https://link.springer.com/10.1140%2Fepjp%2Fi2017-11623-5
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N00afb3d3eac3426fa4c0dd1cc0d65518 schema:name dimensions_id
    75 schema:value pub.1091231219
    76 rdf:type schema:PropertyValue
    77 N0da6ae148dc84809827a42309bef9662 schema:name Department of Civil Engineering, Gonbadekavous University, Gonbadekavous, Iran
    78 rdf:type schema:Organization
    79 N2282212e1aba42caa5f33d914a0b6c1b rdf:first sg:person.016155226340.87
    80 rdf:rest N302e26776452419090816187ffcfb5cd
    81 N302e26776452419090816187ffcfb5cd rdf:first sg:person.012576751412.18
    82 rdf:rest N7187d12fad574e59b3064873b98c4217
    83 N485e07b62b7a49d8a1ceffe145ff6125 schema:issueNumber 8
    84 rdf:type schema:PublicationIssue
    85 N61b0f80cc41347aa91994087d4a6f42c schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N7187d12fad574e59b3064873b98c4217 rdf:first sg:person.011470773747.00
    88 rdf:rest rdf:nil
    89 N7b0e9cb6affd4c7c9d1f1468946ccf52 schema:name doi
    90 schema:value 10.1140/epjp/i2017-11623-5
    91 rdf:type schema:PropertyValue
    92 N82bc06a0560744d6ab56275930836e89 rdf:first sg:person.011153157667.80
    93 rdf:rest N2282212e1aba42caa5f33d914a0b6c1b
    94 Nc1c9fa57dea84ecb8cb3168bfa279b06 schema:name readcube_id
    95 schema:value 69dee30eaa00f71894d9a5eb08381cab9dbac731f117984c8a7ec3dc96dba3ce
    96 rdf:type schema:PropertyValue
    97 Nd988203dbf74430789fac60e41895429 schema:volumeNumber 132
    98 rdf:type schema:PublicationVolume
    99 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Environmental Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Soil Sciences
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1052877 schema:issn 2190-5444
    106 schema:name The European Physical Journal Plus
    107 rdf:type schema:Periodical
    108 sg:person.011153157667.80 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
    109 schema:familyName Hassanlourad
    110 schema:givenName Mahmoud
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153157667.80
    112 rdf:type schema:Person
    113 sg:person.011470773747.00 schema:affiliation N0da6ae148dc84809827a42309bef9662
    114 schema:familyName Mola-Abasi
    115 schema:givenName Hossein
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470773747.00
    117 rdf:type schema:Person
    118 sg:person.012576751412.18 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
    119 schema:familyName Kordnaeij
    120 schema:givenName Afshin
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576751412.18
    122 rdf:type schema:Person
    123 sg:person.016155226340.87 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
    124 schema:familyName Ardakani
    125 schema:givenName Alireza
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155226340.87
    127 rdf:type schema:Person
    128 sg:pub.10.1007/s00254-008-1300-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008234664
    129 https://doi.org/10.1007/s00254-008-1300-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00521-015-1943-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005382147
    132 https://doi.org/10.1007/s00521-015-1943-7
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00521-015-2159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038564613
    135 https://doi.org/10.1007/s00521-015-2159-6
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00521-016-2371-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009805492
    138 https://doi.org/10.1007/s00521-016-2371-z
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00521-016-2390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031280796
    141 https://doi.org/10.1007/s00521-016-2390-9
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00531-009-0506-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151088
    144 https://doi.org/10.1007/s00531-009-0506-5
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00603-012-0353-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009614187
    147 https://doi.org/10.1007/s00603-012-0353-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10064-007-0109-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013717643
    150 https://doi.org/10.1007/s10064-007-0109-y
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10706-007-9146-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019845262
    153 https://doi.org/10.1007/s10706-007-9146-3
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10706-011-9436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044121457
    156 https://doi.org/10.1007/s10706-011-9436-7
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10706-011-9481-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031064241
    159 https://doi.org/10.1007/s10706-011-9481-2
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10706-013-9646-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010290216
    162 https://doi.org/10.1007/s10706-013-9646-2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10706-017-0314-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091054625
    165 https://doi.org/10.1007/s10706-017-0314-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11440-014-0316-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004014708
    168 https://doi.org/10.1007/s11440-014-0316-1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s13369-012-0525-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050129450
    171 https://doi.org/10.1007/s13369-012-0525-6
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s13369-015-1918-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035906990
    174 https://doi.org/10.1007/s13369-015-1918-0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1140/epjp/i2016-16108-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270626
    177 https://doi.org/10.1140/epjp/i2016-16108-5
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1002/jpln.200800233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008415791
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/0266-352x(95)00030-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1024286530
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.asoc.2014.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665219
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.coldregions.2009.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001289532
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.compgeo.2013.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015729255
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.engappai.2011.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017141760
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.engappai.2013.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007106171
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.engappai.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005383256
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.jafrearsci.2015.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006673312
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.jct.2010.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040641576
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.measurement.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049715552
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.sandf.2015.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036554254
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.ultras.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440232
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1061/(asce)0733-9410(1996)122:4(302) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588240
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1061/(asce)1090-0241(1998)124:9(907) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057617972
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1061/(asce)gm.1943-5622.0000299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057631430
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1061/(asce)gm.1943-5622.0000509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057631640
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1061/(asce)gt.1943-5606.0000022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057632012
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1061/(asce)he.1943-5584.0001085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634663
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1061/40510(287)5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097139941
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1061/41041(348)22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097223963
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1080/19648189.2017.1304269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084169471
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/tsmc.1971.4308320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792566
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1111/j.1365-2478.2011.00951.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026613645
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1139/t04-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046610186
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1139/t10-040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002067978
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1680/geot.1997.47.2.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210793
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.3208/sandf.44.5_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048946631
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.3997/1873-0604.2013046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071814095
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.5937/mmeb1304001d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050367769
    238 rdf:type schema:CreativeWork
    239 https://www.grid.ac/institutes/grid.411537.5 schema:alternateName Imam Khomeini International University
    240 schema:name Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
    241 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...