Ontology type: schema:ScholarlyArticle
2017-06-22
AUTHORSAli Taheri, Saeed Heidary, Reza Gholipour Peyvandi
ABSTRACT.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations. More... »
PAGES273
http://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6
DOIhttp://dx.doi.org/10.1140/epjp/i2017-11533-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1086109006
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran",
"id": "http://www.grid.ac/institutes/grid.459846.2",
"name": [
"Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
],
"type": "Organization"
},
"familyName": "Taheri",
"givenName": "Ali",
"id": "sg:person.012161216163.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161216163.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran",
"id": "http://www.grid.ac/institutes/grid.459846.2",
"name": [
"Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
],
"type": "Organization"
},
"familyName": "Heidary",
"givenName": "Saeed",
"id": "sg:person.010610011242.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610011242.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran",
"id": "http://www.grid.ac/institutes/grid.459846.2",
"name": [
"Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
],
"type": "Organization"
},
"familyName": "Gholipour Peyvandi",
"givenName": "Reza",
"id": "sg:person.010726217455.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726217455.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02033777",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048029622",
"https://doi.org/10.1007/bf02033777"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-06-22",
"datePublishedReg": "2017-06-22",
"description": "Abstract.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations.",
"genre": "article",
"id": "sg:pub.10.1140/epjp/i2017-11533-6",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052877",
"issn": [
"2190-5444"
],
"name": "The European Physical Journal Plus",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "132"
}
],
"keywords": [
"neural network",
"neutron activation method",
"prompt gamma-ray spectra",
"gamma-ray spectra",
"prompt gamma spectra",
"back-propagation algorithm",
"scintillator detector",
"analysis system",
"gamma spectra",
"activation method",
"Monte Carlo simulations",
"network",
"Carlo simulations",
"spectra",
"neutrons",
"key points",
"detector",
"ANN",
"algorithm",
"system",
"good precision",
"setup",
"set",
"work",
"method",
"precision",
"simulations",
"least squares analysis",
"source",
"samples",
"data",
"elements",
"cement samples",
"need",
"materials",
"lines",
"point",
"analysis",
"cement raw materials",
"squares analysis",
"raw materials",
"different cement samples"
],
"name": "A bulk analysis system using the prompt gamma neutron activation method and neural network",
"pagination": "273",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1086109006"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjp/i2017-11533-6"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjp/i2017-11533-6",
"https://app.dimensions.ai/details/publication/pub.1086109006"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_745.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjp/i2017-11533-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'
This table displays all metadata directly associated to this object as RDF triples.
116 TRIPLES
21 PREDICATES
67 URIs
58 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjp/i2017-11533-6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | Nef7dc3e5b1554658b1847ca4a8aafe22 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02033777 |
5 | ″ | schema:datePublished | 2017-06-22 |
6 | ″ | schema:datePublishedReg | 2017-06-22 |
7 | ″ | schema:description | Abstract.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N04403c4b951a4b6eb8768b2ec4134bd5 |
11 | ″ | ″ | N5d05ca5deadd4c8dbfe816845abfdde7 |
12 | ″ | ″ | sg:journal.1052877 |
13 | ″ | schema:keywords | ANN |
14 | ″ | ″ | Carlo simulations |
15 | ″ | ″ | Monte Carlo simulations |
16 | ″ | ″ | activation method |
17 | ″ | ″ | algorithm |
18 | ″ | ″ | analysis |
19 | ″ | ″ | analysis system |
20 | ″ | ″ | back-propagation algorithm |
21 | ″ | ″ | cement raw materials |
22 | ″ | ″ | cement samples |
23 | ″ | ″ | data |
24 | ″ | ″ | detector |
25 | ″ | ″ | different cement samples |
26 | ″ | ″ | elements |
27 | ″ | ″ | gamma spectra |
28 | ″ | ″ | gamma-ray spectra |
29 | ″ | ″ | good precision |
30 | ″ | ″ | key points |
31 | ″ | ″ | least squares analysis |
32 | ″ | ″ | lines |
33 | ″ | ″ | materials |
34 | ″ | ″ | method |
35 | ″ | ″ | need |
36 | ″ | ″ | network |
37 | ″ | ″ | neural network |
38 | ″ | ″ | neutron activation method |
39 | ″ | ″ | neutrons |
40 | ″ | ″ | point |
41 | ″ | ″ | precision |
42 | ″ | ″ | prompt gamma spectra |
43 | ″ | ″ | prompt gamma-ray spectra |
44 | ″ | ″ | raw materials |
45 | ″ | ″ | samples |
46 | ″ | ″ | scintillator detector |
47 | ″ | ″ | set |
48 | ″ | ″ | setup |
49 | ″ | ″ | simulations |
50 | ″ | ″ | source |
51 | ″ | ″ | spectra |
52 | ″ | ″ | squares analysis |
53 | ″ | ″ | system |
54 | ″ | ″ | work |
55 | ″ | schema:name | A bulk analysis system using the prompt gamma neutron activation method and neural network |
56 | ″ | schema:pagination | 273 |
57 | ″ | schema:productId | Nb2f3065c9f51442dab9be2c25ce7423e |
58 | ″ | ″ | Nd286877a30b84953b63efa20a1102c22 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1086109006 |
60 | ″ | ″ | https://doi.org/10.1140/epjp/i2017-11533-6 |
61 | ″ | schema:sdDatePublished | 2022-08-04T17:05 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | Neb0ddf7b965d4c0bb556fd040dd373de |
64 | ″ | schema:url | https://doi.org/10.1140/epjp/i2017-11533-6 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N04403c4b951a4b6eb8768b2ec4134bd5 | schema:issueNumber | 6 |
69 | ″ | rdf:type | schema:PublicationIssue |
70 | N2c0f1eff88cf422fb0e62abfe1e634e0 | rdf:first | sg:person.010726217455.23 |
71 | ″ | rdf:rest | rdf:nil |
72 | N5d05ca5deadd4c8dbfe816845abfdde7 | schema:volumeNumber | 132 |
73 | ″ | rdf:type | schema:PublicationVolume |
74 | Nb2f3065c9f51442dab9be2c25ce7423e | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1086109006 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | Nbaf3fc444e7d4f5caaa969d413787863 | rdf:first | sg:person.010610011242.69 |
78 | ″ | rdf:rest | N2c0f1eff88cf422fb0e62abfe1e634e0 |
79 | Nd286877a30b84953b63efa20a1102c22 | schema:name | doi |
80 | ″ | schema:value | 10.1140/epjp/i2017-11533-6 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Neb0ddf7b965d4c0bb556fd040dd373de | schema:name | Springer Nature - SN SciGraph project |
83 | ″ | rdf:type | schema:Organization |
84 | Nef7dc3e5b1554658b1847ca4a8aafe22 | rdf:first | sg:person.012161216163.76 |
85 | ″ | rdf:rest | Nbaf3fc444e7d4f5caaa969d413787863 |
86 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Mathematical Sciences |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1052877 | schema:issn | 2190-5444 |
93 | ″ | schema:name | The European Physical Journal Plus |
94 | ″ | schema:publisher | Springer Nature |
95 | ″ | rdf:type | schema:Periodical |
96 | sg:person.010610011242.69 | schema:affiliation | grid-institutes:grid.459846.2 |
97 | ″ | schema:familyName | Heidary |
98 | ″ | schema:givenName | Saeed |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610011242.69 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.010726217455.23 | schema:affiliation | grid-institutes:grid.459846.2 |
102 | ″ | schema:familyName | Gholipour Peyvandi |
103 | ″ | schema:givenName | Reza |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726217455.23 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.012161216163.76 | schema:affiliation | grid-institutes:grid.459846.2 |
107 | ″ | schema:familyName | Taheri |
108 | ″ | schema:givenName | Ali |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161216163.76 |
110 | ″ | rdf:type | schema:Person |
111 | sg:pub.10.1007/bf02033777 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048029622 |
112 | ″ | ″ | https://doi.org/10.1007/bf02033777 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | grid-institutes:grid.459846.2 | schema:alternateName | Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran |
115 | ″ | schema:name | Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran |
116 | ″ | rdf:type | schema:Organization |