A bulk analysis system using the prompt gamma neutron activation method and neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-22

AUTHORS

Ali Taheri, Saeed Heidary, Reza Gholipour Peyvandi

ABSTRACT

.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations. More... »

PAGES

273

References to SciGraph publications

  • 1997-02. Optimation of PGNAA instrument design for cement raw materials using the MCNP code in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6

    DOI

    http://dx.doi.org/10.1140/epjp/i2017-11533-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086109006


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.459846.2", 
              "name": [
                "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taheri", 
            "givenName": "Ali", 
            "id": "sg:person.012161216163.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161216163.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.459846.2", 
              "name": [
                "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heidary", 
            "givenName": "Saeed", 
            "id": "sg:person.010610011242.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610011242.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.459846.2", 
              "name": [
                "Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gholipour Peyvandi", 
            "givenName": "Reza", 
            "id": "sg:person.010726217455.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726217455.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02033777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048029622", 
              "https://doi.org/10.1007/bf02033777"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-22", 
        "datePublishedReg": "2017-06-22", 
        "description": "Abstract.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjp/i2017-11533-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "keywords": [
          "neural network", 
          "neutron activation method", 
          "prompt gamma-ray spectra", 
          "gamma-ray spectra", 
          "prompt gamma spectra", 
          "back-propagation algorithm", 
          "scintillator detector", 
          "analysis system", 
          "gamma spectra", 
          "activation method", 
          "Monte Carlo simulations", 
          "network", 
          "Carlo simulations", 
          "spectra", 
          "neutrons", 
          "key points", 
          "detector", 
          "ANN", 
          "algorithm", 
          "system", 
          "good precision", 
          "setup", 
          "set", 
          "work", 
          "method", 
          "precision", 
          "simulations", 
          "least squares analysis", 
          "source", 
          "samples", 
          "data", 
          "elements", 
          "cement samples", 
          "need", 
          "materials", 
          "lines", 
          "point", 
          "analysis", 
          "cement raw materials", 
          "squares analysis", 
          "raw materials", 
          "different cement samples"
        ], 
        "name": "A bulk analysis system using the prompt gamma neutron activation method and neural network", 
        "pagination": "273", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086109006"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/i2017-11533-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/i2017-11533-6", 
          "https://app.dimensions.ai/details/publication/pub.1086109006"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_745.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjp/i2017-11533-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11533-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      21 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/i2017-11533-6 schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nef7dc3e5b1554658b1847ca4a8aafe22
    4 schema:citation sg:pub.10.1007/bf02033777
    5 schema:datePublished 2017-06-22
    6 schema:datePublishedReg 2017-06-22
    7 schema:description Abstract.In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N04403c4b951a4b6eb8768b2ec4134bd5
    11 N5d05ca5deadd4c8dbfe816845abfdde7
    12 sg:journal.1052877
    13 schema:keywords ANN
    14 Carlo simulations
    15 Monte Carlo simulations
    16 activation method
    17 algorithm
    18 analysis
    19 analysis system
    20 back-propagation algorithm
    21 cement raw materials
    22 cement samples
    23 data
    24 detector
    25 different cement samples
    26 elements
    27 gamma spectra
    28 gamma-ray spectra
    29 good precision
    30 key points
    31 least squares analysis
    32 lines
    33 materials
    34 method
    35 need
    36 network
    37 neural network
    38 neutron activation method
    39 neutrons
    40 point
    41 precision
    42 prompt gamma spectra
    43 prompt gamma-ray spectra
    44 raw materials
    45 samples
    46 scintillator detector
    47 set
    48 setup
    49 simulations
    50 source
    51 spectra
    52 squares analysis
    53 system
    54 work
    55 schema:name A bulk analysis system using the prompt gamma neutron activation method and neural network
    56 schema:pagination 273
    57 schema:productId Nb2f3065c9f51442dab9be2c25ce7423e
    58 Nd286877a30b84953b63efa20a1102c22
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086109006
    60 https://doi.org/10.1140/epjp/i2017-11533-6
    61 schema:sdDatePublished 2022-08-04T17:05
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Neb0ddf7b965d4c0bb556fd040dd373de
    64 schema:url https://doi.org/10.1140/epjp/i2017-11533-6
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N04403c4b951a4b6eb8768b2ec4134bd5 schema:issueNumber 6
    69 rdf:type schema:PublicationIssue
    70 N2c0f1eff88cf422fb0e62abfe1e634e0 rdf:first sg:person.010726217455.23
    71 rdf:rest rdf:nil
    72 N5d05ca5deadd4c8dbfe816845abfdde7 schema:volumeNumber 132
    73 rdf:type schema:PublicationVolume
    74 Nb2f3065c9f51442dab9be2c25ce7423e schema:name dimensions_id
    75 schema:value pub.1086109006
    76 rdf:type schema:PropertyValue
    77 Nbaf3fc444e7d4f5caaa969d413787863 rdf:first sg:person.010610011242.69
    78 rdf:rest N2c0f1eff88cf422fb0e62abfe1e634e0
    79 Nd286877a30b84953b63efa20a1102c22 schema:name doi
    80 schema:value 10.1140/epjp/i2017-11533-6
    81 rdf:type schema:PropertyValue
    82 Neb0ddf7b965d4c0bb556fd040dd373de schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Nef7dc3e5b1554658b1847ca4a8aafe22 rdf:first sg:person.012161216163.76
    85 rdf:rest Nbaf3fc444e7d4f5caaa969d413787863
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Physical Sciences
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1052877 schema:issn 2190-5444
    93 schema:name The European Physical Journal Plus
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.010610011242.69 schema:affiliation grid-institutes:grid.459846.2
    97 schema:familyName Heidary
    98 schema:givenName Saeed
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610011242.69
    100 rdf:type schema:Person
    101 sg:person.010726217455.23 schema:affiliation grid-institutes:grid.459846.2
    102 schema:familyName Gholipour Peyvandi
    103 schema:givenName Reza
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726217455.23
    105 rdf:type schema:Person
    106 sg:person.012161216163.76 schema:affiliation grid-institutes:grid.459846.2
    107 schema:familyName Taheri
    108 schema:givenName Ali
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012161216163.76
    110 rdf:type schema:Person
    111 sg:pub.10.1007/bf02033777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048029622
    112 https://doi.org/10.1007/bf02033777
    113 rdf:type schema:CreativeWork
    114 grid-institutes:grid.459846.2 schema:alternateName Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
    115 schema:name Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...