Optimal q-homotopy analysis method for time-space fractional gas dynamics equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-19

AUTHORS

K. M. Saad, E. H. AL-Shareef, Mohamed S. Mohamed, Xiao-Jun Yang

ABSTRACT

.It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjp/i2017-11303-6

DOI

http://dx.doi.org/10.1140/epjp/i2017-11303-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045439480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.440757.5", 
          "name": [
            "Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saad", 
        "givenName": "K. M.", 
        "id": "sg:person.013047511500.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047511500.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.440757.5", 
          "name": [
            "Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "AL-Shareef", 
        "givenName": "E. H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.411303.4", 
          "name": [
            "Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamed", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.015527435207.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiao-Jun", 
        "id": "sg:person.011304520661.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304520661.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjp/i2013-13133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016162306", 
          "https://doi.org/10.1140/epjp/i2013-13133-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9680-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457130", 
          "https://doi.org/10.1007/s11075-012-9680-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10440-008-9271-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052462659", 
          "https://doi.org/10.1007/s10440-008-9271-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9548-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040699515", 
          "https://doi.org/10.1007/s11075-012-9548-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-19", 
    "datePublishedReg": "2017-01-19", 
    "description": "Abstract.It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjp/i2017-11303-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052877", 
        "issn": [
          "2190-5444"
        ], 
        "name": "The European Physical Journal Plus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "keywords": [
      "fractional gas dynamics equation", 
      "gas dynamics equations", 
      "q-homotopy analysis method", 
      "dynamic equations", 
      "exact solution", 
      "non-linear partial differential equations", 
      "optimal convergence-control parameters", 
      "convergence control parameter", 
      "partial differential equations", 
      "homotopy analysis method", 
      "square residual error", 
      "good convergence properties", 
      "approximate semi-analytical solution", 
      "semi-analytical solution", 
      "differential equations", 
      "residual error", 
      "q-HAM", 
      "convergence properties", 
      "convergence region", 
      "initial conditions", 
      "general form", 
      "equations", 
      "control parameters", 
      "analysis method", 
      "graphical representation", 
      "solution", 
      "fraction factor", 
      "efficient method", 
      "Mathematica", 
      "error", 
      "convergence", 
      "parameters", 
      "representation", 
      "accuracy", 
      "properties", 
      "detail", 
      "form", 
      "efficiency", 
      "conditions", 
      "comparison", 
      "time", 
      "region", 
      "presence", 
      "ham", 
      "factors", 
      "method", 
      "paper"
    ], 
    "name": "Optimal q-homotopy analysis method for time-space fractional gas dynamics equation", 
    "pagination": "23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045439480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjp/i2017-11303-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjp/i2017-11303-6", 
      "https://app.dimensions.ai/details/publication/pub.1045439480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjp/i2017-11303-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11303-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11303-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11303-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2017-11303-6'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      75 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjp/i2017-11303-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne2ff9397a1f347ac8bb93d8262cc76af
4 schema:citation sg:pub.10.1007/s10440-008-9271-x
5 sg:pub.10.1007/s11075-012-9548-z
6 sg:pub.10.1007/s11075-012-9680-9
7 sg:pub.10.1140/epjp/i2013-13133-x
8 schema:datePublished 2017-01-19
9 schema:datePublishedReg 2017-01-19
10 schema:description Abstract.It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N034a2aad18f842bf94d4bbcfff2c7995
14 N74499a88c3704557afa8ff2d421cff87
15 sg:journal.1052877
16 schema:keywords Mathematica
17 accuracy
18 analysis method
19 approximate semi-analytical solution
20 comparison
21 conditions
22 control parameters
23 convergence
24 convergence control parameter
25 convergence properties
26 convergence region
27 detail
28 differential equations
29 dynamic equations
30 efficiency
31 efficient method
32 equations
33 error
34 exact solution
35 factors
36 form
37 fraction factor
38 fractional gas dynamics equation
39 gas dynamics equations
40 general form
41 good convergence properties
42 graphical representation
43 ham
44 homotopy analysis method
45 initial conditions
46 method
47 non-linear partial differential equations
48 optimal convergence-control parameters
49 paper
50 parameters
51 partial differential equations
52 presence
53 properties
54 q-HAM
55 q-homotopy analysis method
56 region
57 representation
58 residual error
59 semi-analytical solution
60 solution
61 square residual error
62 time
63 schema:name Optimal q-homotopy analysis method for time-space fractional gas dynamics equation
64 schema:pagination 23
65 schema:productId N1b92c687d4af46948db6f2189cc011b6
66 N89dce4e316314c599d846dd327e228e7
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045439480
68 https://doi.org/10.1140/epjp/i2017-11303-6
69 schema:sdDatePublished 2022-12-01T06:36
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N5263bd0eb388476ca21589a5e2fe6614
72 schema:url https://doi.org/10.1140/epjp/i2017-11303-6
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N034a2aad18f842bf94d4bbcfff2c7995 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N1b92c687d4af46948db6f2189cc011b6 schema:name dimensions_id
79 schema:value pub.1045439480
80 rdf:type schema:PropertyValue
81 N5263bd0eb388476ca21589a5e2fe6614 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N71aca77c600f46d584cc64406d23b496 rdf:first sg:person.015527435207.27
84 rdf:rest Na0ef7444095f470b8cf47d9d6beed4ce
85 N74499a88c3704557afa8ff2d421cff87 schema:volumeNumber 132
86 rdf:type schema:PublicationVolume
87 N89dce4e316314c599d846dd327e228e7 schema:name doi
88 schema:value 10.1140/epjp/i2017-11303-6
89 rdf:type schema:PropertyValue
90 N9e1118d2445f4577acc1bfb1126ac8d9 schema:affiliation grid-institutes:grid.440757.5
91 schema:familyName AL-Shareef
92 schema:givenName E. H.
93 rdf:type schema:Person
94 Na0ef7444095f470b8cf47d9d6beed4ce rdf:first sg:person.011304520661.33
95 rdf:rest rdf:nil
96 Ne2ff9397a1f347ac8bb93d8262cc76af rdf:first sg:person.013047511500.41
97 rdf:rest Ne96010d4c7584b4c9116a1016fa180e5
98 Ne96010d4c7584b4c9116a1016fa180e5 rdf:first N9e1118d2445f4577acc1bfb1126ac8d9
99 rdf:rest N71aca77c600f46d584cc64406d23b496
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
104 schema:name Pure Mathematics
105 rdf:type schema:DefinedTerm
106 sg:journal.1052877 schema:issn 2190-5444
107 schema:name The European Physical Journal Plus
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.011304520661.33 schema:affiliation grid-institutes:grid.411510.0
111 schema:familyName Yang
112 schema:givenName Xiao-Jun
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304520661.33
114 rdf:type schema:Person
115 sg:person.013047511500.41 schema:affiliation grid-institutes:grid.440757.5
116 schema:familyName Saad
117 schema:givenName K. M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047511500.41
119 rdf:type schema:Person
120 sg:person.015527435207.27 schema:affiliation grid-institutes:grid.411303.4
121 schema:familyName Mohamed
122 schema:givenName Mohamed S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015527435207.27
124 rdf:type schema:Person
125 sg:pub.10.1007/s10440-008-9271-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052462659
126 https://doi.org/10.1007/s10440-008-9271-x
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11075-012-9548-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040699515
129 https://doi.org/10.1007/s11075-012-9548-z
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11075-012-9680-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457130
132 https://doi.org/10.1007/s11075-012-9680-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1140/epjp/i2013-13133-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016162306
135 https://doi.org/10.1140/epjp/i2013-13133-x
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.411303.4 schema:alternateName Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
138 schema:name Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
139 rdf:type schema:Organization
140 grid-institutes:grid.411510.0 schema:alternateName School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China
141 schema:name School of Mechanics and Civil Engineering, China University of Mining and Technology, 221116, Xuzhou, China
142 rdf:type schema:Organization
143 grid-institutes:grid.440757.5 schema:alternateName Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
144 schema:name Mathematics Department Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...