A confining model for charmonium and new gauge-invariant field equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-03

AUTHORS

Jong-Ping Hsu

ABSTRACT

We discuss a confining model for charmonium in which the attractive force are derived from a new type of gauge field equation with a generalized SU3 gauge symmetry. The new gauge transformations involve non-integrable phase factors with vector gauge functions ωωa(x). These transformations reduce to the usual SU3 gauge transformations in the special case ωμa(x) = ∂μξa(x). Such a generalized gauge symmetry leads to the fourth-order equations for new gauge fields and to the linear confining potentials. The fourth-order field equation implies that the corresponding massless gauge boson has non-definite energy. However, the new gauge boson is permanently confined in a quark system by the linear potential. We use the empirical potentials of the Cornell group for charmonium to obtain the coupling strength f2/(4π) ≈ 0.19 for the strong interaction. Such a confining model of quark dynamics could be compatible with perturbation. The model can be applied to other quark-antiquark systems. More... »

PAGES

108

References to SciGraph publications

  • 2012-03-28. Space-time translational gauge identities in Abelian Yang-Mills gravity in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 1985-08-01. Four-dimensional symmetry from a broad viewpoint in IL NUOVO CIMENTO B (1971-1996)
  • 1985-02. Can quarks always be confined by a linear potential? in FOUNDATIONS OF PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/i2014-14108-1

    DOI

    http://dx.doi.org/10.1140/epjp/i2014-14108-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037048756


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266686.a", 
              "name": [
                "Department of Physics, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Jong-Ping", 
            "id": "sg:person.014301222742.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00735286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017909124", 
              "https://doi.org/10.1007/bf00735286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02728896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005755189", 
              "https://doi.org/10.1007/bf02728896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2012-12035-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027655692", 
              "https://doi.org/10.1140/epjp/i2012-12035-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06-03", 
        "datePublishedReg": "2014-06-03", 
        "description": "We discuss a confining model for charmonium in which the attractive force are derived from a new type of gauge field equation with a generalized SU3 gauge symmetry. The new gauge transformations involve non-integrable phase factors with vector gauge functions \u03c9\u03c9a(x). These transformations reduce to the usual SU3 gauge transformations in the special case \u03c9\u03bca(x) = \u2202\u03bc\u03bea(x). Such a generalized gauge symmetry leads to the fourth-order equations for new gauge fields and to the linear confining potentials. The fourth-order field equation implies that the corresponding massless gauge boson has non-definite energy. However, the new gauge boson is permanently confined in a quark system by the linear potential. We use the empirical potentials of the Cornell group for charmonium to obtain the coupling strength f2/(4\u03c0) \u2248 0.19 for the strong interaction. Such a confining model of quark dynamics could be compatible with perturbation. The model can be applied to other quark-antiquark systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjp/i2014-14108-1", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "keywords": [
          "field equations", 
          "gauge invariant field equations", 
          "gauge transformations", 
          "fourth-order field equations", 
          "gauge symmetry", 
          "gauge field equations", 
          "fourth-order equation", 
          "new gauge field", 
          "new gauge transformation", 
          "non-integrable phase factors", 
          "gauge fields", 
          "linear confining potential", 
          "gauge function", 
          "linear potential", 
          "Cornell group", 
          "equations", 
          "massless gauge bosons", 
          "phase factor", 
          "special case", 
          "confining model", 
          "coupling strength", 
          "confining potential", 
          "symmetry", 
          "gauge bosons", 
          "attractive force", 
          "bosons", 
          "empirical potentials", 
          "model", 
          "quark-antiquark system", 
          "quark systems", 
          "quark dynamics", 
          "perturbations", 
          "new gauge bosons", 
          "dynamics", 
          "transformation", 
          "new type", 
          "system", 
          "field", 
          "strong interaction", 
          "force", 
          "function", 
          "energy", 
          "charmonium", 
          "cases", 
          "potential", 
          "interaction", 
          "types", 
          "strength", 
          "factors", 
          "group"
        ], 
        "name": "A confining model for charmonium and new gauge-invariant field equations", 
        "pagination": "108", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037048756"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/i2014-14108-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/i2014-14108-1", 
          "https://app.dimensions.ai/details/publication/pub.1037048756"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_629.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjp/i2014-14108-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2014-14108-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2014-14108-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2014-14108-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2014-14108-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      77 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/i2014-14108-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne644f7b1f7864a34ba7ae7c3a8837a96
    4 schema:citation sg:pub.10.1007/bf00735286
    5 sg:pub.10.1007/bf02728896
    6 sg:pub.10.1140/epjp/i2012-12035-9
    7 schema:datePublished 2014-06-03
    8 schema:datePublishedReg 2014-06-03
    9 schema:description We discuss a confining model for charmonium in which the attractive force are derived from a new type of gauge field equation with a generalized SU3 gauge symmetry. The new gauge transformations involve non-integrable phase factors with vector gauge functions ωωa(x). These transformations reduce to the usual SU3 gauge transformations in the special case ωμa(x) = ∂μξa(x). Such a generalized gauge symmetry leads to the fourth-order equations for new gauge fields and to the linear confining potentials. The fourth-order field equation implies that the corresponding massless gauge boson has non-definite energy. However, the new gauge boson is permanently confined in a quark system by the linear potential. We use the empirical potentials of the Cornell group for charmonium to obtain the coupling strength f2/(4π) ≈ 0.19 for the strong interaction. Such a confining model of quark dynamics could be compatible with perturbation. The model can be applied to other quark-antiquark systems.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N3506717bf16a4ba3b4c6265898babacb
    13 N83f13761b5bc4750a6ad9904e1911d24
    14 sg:journal.1052877
    15 schema:keywords Cornell group
    16 attractive force
    17 bosons
    18 cases
    19 charmonium
    20 confining model
    21 confining potential
    22 coupling strength
    23 dynamics
    24 empirical potentials
    25 energy
    26 equations
    27 factors
    28 field
    29 field equations
    30 force
    31 fourth-order equation
    32 fourth-order field equations
    33 function
    34 gauge bosons
    35 gauge field equations
    36 gauge fields
    37 gauge function
    38 gauge invariant field equations
    39 gauge symmetry
    40 gauge transformations
    41 group
    42 interaction
    43 linear confining potential
    44 linear potential
    45 massless gauge bosons
    46 model
    47 new gauge bosons
    48 new gauge field
    49 new gauge transformation
    50 new type
    51 non-integrable phase factors
    52 perturbations
    53 phase factor
    54 potential
    55 quark dynamics
    56 quark systems
    57 quark-antiquark system
    58 special case
    59 strength
    60 strong interaction
    61 symmetry
    62 system
    63 transformation
    64 types
    65 schema:name A confining model for charmonium and new gauge-invariant field equations
    66 schema:pagination 108
    67 schema:productId N32c4aaee33fb429d91c3bdbe7ebd8987
    68 N3bd8b565b53e440f8c00796ff162f8f6
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037048756
    70 https://doi.org/10.1140/epjp/i2014-14108-1
    71 schema:sdDatePublished 2022-09-02T15:57
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N6f535b333c834e74ab4c27578aaa1eef
    74 schema:url https://doi.org/10.1140/epjp/i2014-14108-1
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N32c4aaee33fb429d91c3bdbe7ebd8987 schema:name doi
    79 schema:value 10.1140/epjp/i2014-14108-1
    80 rdf:type schema:PropertyValue
    81 N3506717bf16a4ba3b4c6265898babacb schema:volumeNumber 129
    82 rdf:type schema:PublicationVolume
    83 N3bd8b565b53e440f8c00796ff162f8f6 schema:name dimensions_id
    84 schema:value pub.1037048756
    85 rdf:type schema:PropertyValue
    86 N6f535b333c834e74ab4c27578aaa1eef schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N83f13761b5bc4750a6ad9904e1911d24 schema:issueNumber 6
    89 rdf:type schema:PublicationIssue
    90 Ne644f7b1f7864a34ba7ae7c3a8837a96 rdf:first sg:person.014301222742.62
    91 rdf:rest rdf:nil
    92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mathematical Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Pure Mathematics
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1052877 schema:issn 2190-5444
    99 schema:name The European Physical Journal Plus
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.014301222742.62 schema:affiliation grid-institutes:grid.266686.a
    103 schema:familyName Hsu
    104 schema:givenName Jong-Ping
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301222742.62
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf00735286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017909124
    108 https://doi.org/10.1007/bf00735286
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02728896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005755189
    111 https://doi.org/10.1007/bf02728896
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1140/epjp/i2012-12035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027655692
    114 https://doi.org/10.1140/epjp/i2012-12035-9
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.266686.a schema:alternateName Department of Physics, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA
    117 schema:name Department of Physics, University of Massachusetts Dartmouth, 02747-2300, North Dartmouth, MA, USA
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...