Electric dipole moment from QCD and how it vanishes for mixed states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

A. P. Balachandran, T. R. Govindarajan, A. R. de Queiroz

ABSTRACT

In a previous paper (A.P. Balachandran et al., JHEP 05, 012 (2012)), we studied the mass and formulated its chirally symmetric coupling to fermions which induces electric dipole moment (EDM) maintaining chiral symmetry throughout in contrast to earlier works. Here we calculate the EDM to one loop. It is finite, having no ultraviolet divergence while its infrared divergence is canceled by soft photon emission processes exactly as for . The coupling does not lead to new divergences (not present for in soft photon processes either. Furthermore, as was argued previously (A.P. Balachandran et al., JHEP 05, 012 (2012)), the EDM vanishes if suitable mixed quantum states are used. This means that in a quantum theory based on such mixed states, a strong bound on EDM will not necessarily lead to a strong bound such as . This fact eliminates the need to fine tune or for the axion field. More... »

PAGES

118

References to SciGraph publications

  • 2011-11. Quantum gravity: mixed states from diffeomorphism anomalies in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05. Novel studies on the η′ effective lagrangian in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/i2012-12118-7

    DOI

    http://dx.doi.org/10.1140/epjp/i2012-12118-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003668408


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.462414.1", 
              "name": [
                "Physics Department, Syracuse University, 13244-1130, Syracuse, NY, USA", 
                "Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balachandran", 
            "givenName": "A. P.", 
            "id": "sg:person.0675625774.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675625774.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.462414.1", 
              "name": [
                "Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Govindarajan", 
            "givenName": "T. R.", 
            "id": "sg:person.014547132667.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014547132667.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bras\u00edlia", 
              "id": "https://www.grid.ac/institutes/grid.7632.0", 
              "name": [
                "Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India", 
                "Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70919-970, Brasilia, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Queiroz", 
            "givenName": "A. R.", 
            "id": "sg:person.0732003076.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732003076.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2011)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009168184", 
              "https://doi.org/10.1007/jhep11(2011)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.180402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009478884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.180402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009478884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aop.2005.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009760568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aop.2005.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009760568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(79)90128-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018141785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(79)90128-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018141785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019099228", 
              "https://doi.org/10.1007/jhep05(2012)012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)90484-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021178808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)90484-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021178808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(80)90325-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023178347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90332-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026602034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90332-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026602034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030641593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/9/8/281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033595450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.025017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034810014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.025017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034810014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(80)90024-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037125645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(80)90024-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037125645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.73.416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.73.416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.21.3388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.21.3388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.29.2919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.29.2919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.29.2936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.29.2936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060691326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x03015143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062922857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x92000934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062929460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.66.1408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063138407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.66.1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063138447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098844715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/1128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098975445"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10", 
        "datePublishedReg": "2012-10-01", 
        "description": "In a previous paper (A.P. Balachandran et al., JHEP 05, 012 (2012)), we studied the mass and formulated its chirally symmetric coupling to fermions which induces electric dipole moment (EDM) maintaining chiral symmetry throughout in contrast to earlier works. Here we calculate the EDM to one loop. It is finite, having no ultraviolet divergence while its infrared divergence is canceled by soft photon emission processes exactly as for . The coupling does not lead to new divergences (not present for in soft photon processes either. Furthermore, as was argued previously (A.P. Balachandran et al., JHEP 05, 012 (2012)), the EDM vanishes if suitable mixed quantum states are used. This means that in a quantum theory based on such mixed states, a strong bound on EDM will not necessarily lead to a strong bound such as . This fact eliminates the need to fine tune or for the axion field.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjp/i2012-12118-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "127"
          }
        ], 
        "name": "Electric dipole moment from QCD and how it vanishes for mixed states", 
        "pagination": "118", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "11799b0df3827c090b4f3cbd3d8a2aa4295ecdc94ef0d90ec31ea209df3e66b4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/i2012-12118-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003668408"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/i2012-12118-7", 
          "https://app.dimensions.ai/details/publication/pub.1003668408"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjp%2Fi2012-12118-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12118-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12118-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12118-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12118-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/i2012-12118-7 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N18d3905c570d4b1abb745ded718727b9
    4 schema:citation sg:pub.10.1007/jhep05(2012)012
    5 sg:pub.10.1007/jhep11(2011)126
    6 https://doi.org/10.1016/0003-4916(80)90325-5
    7 https://doi.org/10.1016/0370-2693(79)90128-x
    8 https://doi.org/10.1016/0370-2693(80)90484-0
    9 https://doi.org/10.1016/0550-3213(79)90332-8
    10 https://doi.org/10.1016/0550-3213(80)90024-3
    11 https://doi.org/10.1016/j.aop.2005.04.002
    12 https://doi.org/10.1016/j.nuclphysb.2005.08.010
    13 https://doi.org/10.1088/1367-2630/9/8/281
    14 https://doi.org/10.1103/physrev.73.416
    15 https://doi.org/10.1103/physrevd.19.2227
    16 https://doi.org/10.1103/physrevd.21.3388
    17 https://doi.org/10.1103/physrevd.29.2919
    18 https://doi.org/10.1103/physrevd.29.2936
    19 https://doi.org/10.1103/physrevd.85.025017
    20 https://doi.org/10.1103/physrevlett.94.180402
    21 https://doi.org/10.1142/1128
    22 https://doi.org/10.1142/1180
    23 https://doi.org/10.1142/s0217751x03015143
    24 https://doi.org/10.1142/s0217751x92000934
    25 https://doi.org/10.1143/ptp.66.1408
    26 https://doi.org/10.1143/ptp.66.1789
    27 schema:datePublished 2012-10
    28 schema:datePublishedReg 2012-10-01
    29 schema:description In a previous paper (A.P. Balachandran et al., JHEP 05, 012 (2012)), we studied the mass and formulated its chirally symmetric coupling to fermions which induces electric dipole moment (EDM) maintaining chiral symmetry throughout in contrast to earlier works. Here we calculate the EDM to one loop. It is finite, having no ultraviolet divergence while its infrared divergence is canceled by soft photon emission processes exactly as for . The coupling does not lead to new divergences (not present for in soft photon processes either. Furthermore, as was argued previously (A.P. Balachandran et al., JHEP 05, 012 (2012)), the EDM vanishes if suitable mixed quantum states are used. This means that in a quantum theory based on such mixed states, a strong bound on EDM will not necessarily lead to a strong bound such as . This fact eliminates the need to fine tune or for the axion field.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N23f1f8394b0749449fcb5fd86f255f53
    34 N417531fd867041bf868e5e4a5ed7ecb2
    35 sg:journal.1052877
    36 schema:name Electric dipole moment from QCD and how it vanishes for mixed states
    37 schema:pagination 118
    38 schema:productId N35874e70d1b548bb8f22d77ac93352d6
    39 N5a87199a94b14820b41b03aed143433f
    40 Na1dc05ccad6641098a77206752a9d8f7
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003668408
    42 https://doi.org/10.1140/epjp/i2012-12118-7
    43 schema:sdDatePublished 2019-04-10T16:40
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nef6b21b8d2bf4fc9be25f208b78e80b5
    46 schema:url http://link.springer.com/10.1140%2Fepjp%2Fi2012-12118-7
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N08f85494926843689438b5f453bb240f rdf:first sg:person.0732003076.69
    51 rdf:rest rdf:nil
    52 N18d3905c570d4b1abb745ded718727b9 rdf:first sg:person.0675625774.88
    53 rdf:rest Nf9f9cb759f3a4b09b8da7bf5a8da356a
    54 N23f1f8394b0749449fcb5fd86f255f53 schema:volumeNumber 127
    55 rdf:type schema:PublicationVolume
    56 N35874e70d1b548bb8f22d77ac93352d6 schema:name dimensions_id
    57 schema:value pub.1003668408
    58 rdf:type schema:PropertyValue
    59 N417531fd867041bf868e5e4a5ed7ecb2 schema:issueNumber 10
    60 rdf:type schema:PublicationIssue
    61 N5a87199a94b14820b41b03aed143433f schema:name doi
    62 schema:value 10.1140/epjp/i2012-12118-7
    63 rdf:type schema:PropertyValue
    64 Na1dc05ccad6641098a77206752a9d8f7 schema:name readcube_id
    65 schema:value 11799b0df3827c090b4f3cbd3d8a2aa4295ecdc94ef0d90ec31ea209df3e66b4
    66 rdf:type schema:PropertyValue
    67 Nef6b21b8d2bf4fc9be25f208b78e80b5 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nf9f9cb759f3a4b09b8da7bf5a8da356a rdf:first sg:person.014547132667.28
    70 rdf:rest N08f85494926843689438b5f453bb240f
    71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Physical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Quantum Physics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1052877 schema:issn 2190-5444
    78 schema:name The European Physical Journal Plus
    79 rdf:type schema:Periodical
    80 sg:person.014547132667.28 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
    81 schema:familyName Govindarajan
    82 schema:givenName T. R.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014547132667.28
    84 rdf:type schema:Person
    85 sg:person.0675625774.88 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
    86 schema:familyName Balachandran
    87 schema:givenName A. P.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675625774.88
    89 rdf:type schema:Person
    90 sg:person.0732003076.69 schema:affiliation https://www.grid.ac/institutes/grid.7632.0
    91 schema:familyName de Queiroz
    92 schema:givenName A. R.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732003076.69
    94 rdf:type schema:Person
    95 sg:pub.10.1007/jhep05(2012)012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019099228
    96 https://doi.org/10.1007/jhep05(2012)012
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/jhep11(2011)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009168184
    99 https://doi.org/10.1007/jhep11(2011)126
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0003-4916(80)90325-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023178347
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0370-2693(79)90128-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018141785
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0370-2693(80)90484-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021178808
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0550-3213(79)90332-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026602034
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0550-3213(80)90024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125645
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.aop.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009760568
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.nuclphysb.2005.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030641593
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1088/1367-2630/9/8/281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033595450
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrev.73.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453956
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevd.19.2227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686612
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevd.21.3388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688044
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevd.29.2919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691324
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.29.2936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691326
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevd.85.025017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034810014
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevlett.94.180402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009478884
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1142/1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098975445
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098844715
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1142/s0217751x03015143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062922857
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1142/s0217751x92000934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062929460
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1143/ptp.66.1408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063138407
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1143/ptp.66.1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063138447
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
    144 schema:name Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
    145 Physics Department, Syracuse University, 13244-1130, Syracuse, NY, USA
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.7632.0 schema:alternateName University of Brasília
    148 schema:name Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
    149 Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70919-970, Brasilia, Brazil
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...