Cryogenic bolometer crystals for rare event searches⋆ View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

L. Gironi

ABSTRACT

Bolometers are suitable detectors for fundamental physics experiments, like neutrinoless Double Beta Decay, because of their very good intrinsic characteristics (high detection efficiency, excellent energy resolution, ...). The bolometric technique has already obtained excellent results on the neutrino mass study with Cuoricino, the ancestor of CUORE, an array of 19 towers with 52 crystals each, which will achieve a sensitivity below 100meV. Cuoricino has also shown that the surface contaminations of materials facing the detectors would be the limiting factor for the sensitivity of next-generation experiments with bolometers. Mainly for this reason scintillating bolometers have been developed allowing a very efficient discrimination of alpha particles thanks to their double readout. Excellent results were obtained with different compounds such as CdWO4 , ZnSe and ZnMoO4. Tests performed on these crystals showed the possibility to discriminate the interacting particles through a pulse shape analysis. This feature is very interesting because it allows to obtain the same (or even better) discrimination power achieved with the double readout but with a much easier and cheaper assembly. Finally, the sensitivity that could be achieved with a large mass array of scintillating bolometers is analyzed on the basis of the results obtained on background and energy resolution. More... »

PAGES

84

References to SciGraph publications

  • 2009-08. Background study and Monte Carlo simulations for large-mass bolometers in THE EUROPEAN PHYSICAL JOURNAL A
  • 2012-05. Pulse Shape Analysis with Scintillating Bolometers in JOURNAL OF LOW TEMPERATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjp/i2012-12084-0

    DOI

    http://dx.doi.org/10.1140/epjp/i2012-12084-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048711525


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Torino", 
              "id": "https://www.grid.ac/institutes/grid.470222.1", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Milano Bicocca, Milano Bicocca, Italy", 
                "INFN, Milano Bicocca, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gironi", 
            "givenName": "L.", 
            "id": "sg:person.015257675045.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257675045.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevc.78.035502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003617595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.78.035502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003617595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.062501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013660487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.062501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013660487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/203/1/012065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015444147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/203/1/012065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015444147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysa.2003.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019531352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2011.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020765850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2010.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022206463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcrysgro.2010.06.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025360240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2009.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025822745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.radmeas.2007.02.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027336979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nima.2003.07.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027841276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9002(03)01368-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030775608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9002(03)01368-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030775608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysbps.2007.08.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031618370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epja/i2009-10805-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033357816", 
              "https://doi.org/10.1140/epja/i2009-10805-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2012.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034574482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/173/1/012012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034830172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/173/1/012012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034830172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysa.2008.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036370342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-012-0478-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041786290", 
              "https://doi.org/10.1007/s10909-012-0478-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/crat.201100364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044954605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-0221/5/11/p11007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048820569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-0221/5/11/p11007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048820569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.astropartphys.2010.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051543835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optmat.2008.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052710020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.212502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053384056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.212502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053384056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0370-1298/64/10/303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059090547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.48.512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060448611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.48.512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060448611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.56.1184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060450656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.56.1184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060450656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.77.045503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060676133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.77.045503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060676133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.79.044301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060676575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.79.044301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060676575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.28.870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063131489"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-08", 
        "datePublishedReg": "2012-08-01", 
        "description": "Bolometers are suitable detectors for fundamental physics experiments, like neutrinoless Double Beta Decay, because of their very good intrinsic characteristics (high detection efficiency, excellent energy resolution, ...). The bolometric technique has already obtained excellent results on the neutrino mass study with Cuoricino, the ancestor of CUORE, an array of 19 towers with 52 crystals each, which will achieve a sensitivity below 100meV. Cuoricino has also shown that the surface contaminations of materials facing the detectors would be the limiting factor for the sensitivity of next-generation experiments with bolometers. Mainly for this reason scintillating bolometers have been developed allowing a very efficient discrimination of alpha particles thanks to their double readout. Excellent results were obtained with different compounds such as CdWO4 , ZnSe and ZnMoO4. Tests performed on these crystals showed the possibility to discriminate the interacting particles through a pulse shape analysis. This feature is very interesting because it allows to obtain the same (or even better) discrimination power achieved with the double readout but with a much easier and cheaper assembly. Finally, the sensitivity that could be achieved with a large mass array of scintillating bolometers is analyzed on the basis of the results obtained on background and energy resolution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjp/i2012-12084-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052877", 
            "issn": [
              "2190-5444"
            ], 
            "name": "The European Physical Journal Plus", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "127"
          }
        ], 
        "name": "Cryogenic bolometer crystals for rare event searches\u22c6", 
        "pagination": "84", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e80d7516594673d9c342da1d5884b178c9b65f76b7f22c961a56c79b611842f9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjp/i2012-12084-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048711525"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjp/i2012-12084-0", 
          "https://app.dimensions.ai/details/publication/pub.1048711525"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjp%2Fi2012-12084-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12084-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12084-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12084-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjp/i2012-12084-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjp/i2012-12084-0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N42034f2ca83e4c00bde6b5de026c224b
    4 schema:citation sg:pub.10.1007/s10909-012-0478-x
    5 sg:pub.10.1140/epja/i2009-10805-7
    6 https://doi.org/10.1002/crat.201100364
    7 https://doi.org/10.1016/j.astropartphys.2009.11.002
    8 https://doi.org/10.1016/j.astropartphys.2010.06.009
    9 https://doi.org/10.1016/j.astropartphys.2010.09.004
    10 https://doi.org/10.1016/j.astropartphys.2011.02.002
    11 https://doi.org/10.1016/j.astropartphys.2012.02.013
    12 https://doi.org/10.1016/j.jcrysgro.2010.06.034
    13 https://doi.org/10.1016/j.nima.2003.07.067
    14 https://doi.org/10.1016/j.nuclphysa.2003.11.003
    15 https://doi.org/10.1016/j.nuclphysa.2008.12.005
    16 https://doi.org/10.1016/j.nuclphysbps.2007.08.043
    17 https://doi.org/10.1016/j.optmat.2008.09.014
    18 https://doi.org/10.1016/j.radmeas.2007.02.031
    19 https://doi.org/10.1016/s0168-9002(03)01368-8
    20 https://doi.org/10.1088/0370-1298/64/10/303
    21 https://doi.org/10.1088/1742-6596/173/1/012012
    22 https://doi.org/10.1088/1742-6596/203/1/012065
    23 https://doi.org/10.1088/1748-0221/5/11/p11007
    24 https://doi.org/10.1103/physrev.48.512
    25 https://doi.org/10.1103/physrev.56.1184
    26 https://doi.org/10.1103/physrevc.77.045503
    27 https://doi.org/10.1103/physrevc.78.035502
    28 https://doi.org/10.1103/physrevc.79.044301
    29 https://doi.org/10.1103/physrevlett.102.212502
    30 https://doi.org/10.1103/physrevlett.108.062501
    31 https://doi.org/10.1143/ptp.28.870
    32 schema:datePublished 2012-08
    33 schema:datePublishedReg 2012-08-01
    34 schema:description Bolometers are suitable detectors for fundamental physics experiments, like neutrinoless Double Beta Decay, because of their very good intrinsic characteristics (high detection efficiency, excellent energy resolution, ...). The bolometric technique has already obtained excellent results on the neutrino mass study with Cuoricino, the ancestor of CUORE, an array of 19 towers with 52 crystals each, which will achieve a sensitivity below 100meV. Cuoricino has also shown that the surface contaminations of materials facing the detectors would be the limiting factor for the sensitivity of next-generation experiments with bolometers. Mainly for this reason scintillating bolometers have been developed allowing a very efficient discrimination of alpha particles thanks to their double readout. Excellent results were obtained with different compounds such as CdWO4 , ZnSe and ZnMoO4. Tests performed on these crystals showed the possibility to discriminate the interacting particles through a pulse shape analysis. This feature is very interesting because it allows to obtain the same (or even better) discrimination power achieved with the double readout but with a much easier and cheaper assembly. Finally, the sensitivity that could be achieved with a large mass array of scintillating bolometers is analyzed on the basis of the results obtained on background and energy resolution.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N4189e9477d584898b20545634c189acd
    39 N73195efc24324a1dbf7fd34a9a00888d
    40 sg:journal.1052877
    41 schema:name Cryogenic bolometer crystals for rare event searches⋆
    42 schema:pagination 84
    43 schema:productId N012e03c49dc843aeb243660579e5fc18
    44 N04c5611377094adfba4d59a3a4b1181a
    45 N0513cac3022c464282ef31845254d884
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048711525
    47 https://doi.org/10.1140/epjp/i2012-12084-0
    48 schema:sdDatePublished 2019-04-11T01:59
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N5a5d828448d9440dbfad054a01270792
    51 schema:url http://link.springer.com/10.1140%2Fepjp%2Fi2012-12084-0
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N012e03c49dc843aeb243660579e5fc18 schema:name doi
    56 schema:value 10.1140/epjp/i2012-12084-0
    57 rdf:type schema:PropertyValue
    58 N04c5611377094adfba4d59a3a4b1181a schema:name dimensions_id
    59 schema:value pub.1048711525
    60 rdf:type schema:PropertyValue
    61 N0513cac3022c464282ef31845254d884 schema:name readcube_id
    62 schema:value e80d7516594673d9c342da1d5884b178c9b65f76b7f22c961a56c79b611842f9
    63 rdf:type schema:PropertyValue
    64 N4189e9477d584898b20545634c189acd schema:volumeNumber 127
    65 rdf:type schema:PublicationVolume
    66 N42034f2ca83e4c00bde6b5de026c224b rdf:first sg:person.015257675045.88
    67 rdf:rest rdf:nil
    68 N5a5d828448d9440dbfad054a01270792 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N73195efc24324a1dbf7fd34a9a00888d schema:issueNumber 8
    71 rdf:type schema:PublicationIssue
    72 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Chemical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Chemistry (incl. Structural)
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1052877 schema:issn 2190-5444
    79 schema:name The European Physical Journal Plus
    80 rdf:type schema:Periodical
    81 sg:person.015257675045.88 schema:affiliation https://www.grid.ac/institutes/grid.470222.1
    82 schema:familyName Gironi
    83 schema:givenName L.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257675045.88
    85 rdf:type schema:Person
    86 sg:pub.10.1007/s10909-012-0478-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041786290
    87 https://doi.org/10.1007/s10909-012-0478-x
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1140/epja/i2009-10805-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033357816
    90 https://doi.org/10.1140/epja/i2009-10805-7
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1002/crat.201100364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044954605
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/j.astropartphys.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025822745
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/j.astropartphys.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051543835
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/j.astropartphys.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022206463
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.astropartphys.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020765850
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.astropartphys.2012.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034574482
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.jcrysgro.2010.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360240
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.nima.2003.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027841276
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.nuclphysa.2003.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019531352
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.nuclphysa.2008.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036370342
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.nuclphysbps.2007.08.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031618370
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.optmat.2008.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052710020
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.radmeas.2007.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027336979
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0168-9002(03)01368-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775608
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1088/0370-1298/64/10/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090547
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1088/1742-6596/173/1/012012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034830172
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1088/1742-6596/203/1/012065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015444147
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1088/1748-0221/5/11/p11007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048820569
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrev.48.512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060448611
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrev.56.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060450656
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physrevc.77.045503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060676133
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevc.78.035502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003617595
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevc.79.044301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060676575
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevlett.102.212502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053384056
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevlett.108.062501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013660487
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1143/ptp.28.870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063131489
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.470222.1 schema:alternateName INFN Sezione di Torino
    145 schema:name Dipartimento di Fisica, Università di Milano Bicocca, Milano Bicocca, Italy
    146 INFN, Milano Bicocca, Italy
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...