Interplay of digital and analog control in time-resolved gene expression profiles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Moritz E. Beber, Patrick Sobetzko, Georgi Muskhelishvili, Marc-Thorsten Hütt

ABSTRACT

Measuring the agreement between a gene expression profile and a known transcriptional regulatory network is an important step in the functional interpretation of bacterial physiological state. In this way, general design principles can be explored. One such interpretive framework is the relationship of digital control, that is, the impact of sequence-specific interactions, and analog control, i.e., the extent of the influence of chromosomal structure. Here, we present time-resolved gene expression profiles of Escherichia coli’s growth cycle as measured by RNA-seq. We extend methods which have been developed for discrete sets of differentially expressed genes and apply them to the wild type and two mutant time-series for which the global transcriptional regulators fis and hns were inactivated. We test our continuous methods using simulated ‘expression profiles’ generated from random Boolean network dynamics where we observe a clear trade-off between maximum response and level of detail included. In the real time-course expression data, we find strong interdependent changes of digital and analog control during the exponential growth phase and a dominance of analog control during the stationary phase. Our investigation puts forward a simple and reliable method for quantifying the match between time-resolved gene expression profiles and a transcriptional regulatory network. The method reveals a systematic compensatory interplay of digital and analog control in the genetic regulation of E. coli’s growth cycle. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0035-7

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-016-0035-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026800673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419538.2", 
          "name": [
            "Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany", 
            "Bioinformatics Group, Max Planck Institute for Molecular Genetics, Ihnestra\u00dfe 63\u201373, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beber", 
        "givenName": "Moritz E.", 
        "id": "sg:person.01322430734.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322430734.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philipp University of Marburg", 
          "id": "https://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany", 
            "Department of Chromosome Biology, LOEWE-Zentrum f\u00fcr Synthetische Mikrobiologie, Philipps-Universit\u00e4t Marburg, Hans-Meerwein-Stra\u00dfe, 35043, Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobetzko", 
        "givenName": "Patrick", 
        "id": "sg:person.0714040117.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714040117.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jacobs University", 
          "id": "https://www.grid.ac/institutes/grid.15078.3b", 
          "name": [
            "Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muskhelishvili", 
        "givenName": "Georgi", 
        "id": "sg:person.01070047103.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047103.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jacobs University", 
          "id": "https://www.grid.ac/institutes/grid.15078.3b", 
          "name": [
            "Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fctt", 
        "givenName": "Marc-Thorsten", 
        "id": "sg:person.01334610443.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334610443.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000785286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001253374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003313210", 
          "https://doi.org/10.1038/srep07870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527626359.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005291259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-1-44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005927047", 
          "https://doi.org/10.1186/1752-0509-1-44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006719708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/metabo2030632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3mb25515h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007610930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008416371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1478-811x-11-43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008642132", 
          "https://doi.org/10.1186/1478-811x-11-43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2011.0231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009542705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011740649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2012.0490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011838531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro3007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012743620", 
          "https://doi.org/10.1038/nrmicro3007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013591105", 
          "https://doi.org/10.1038/nrg3885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2003.03461.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014855813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018491576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018491576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023029250", 
          "https://doi.org/10.1038/nmeth.2016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.17.9419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026251101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0811168106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027505091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606791", 
          "https://doi.org/10.1186/1752-0509-5-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029218506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030236624", 
          "https://doi.org/10.1038/nrmicro2832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2003.03805.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033371171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4423-13.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040405061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-2-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042169689", 
          "https://doi.org/10.1186/1752-0509-2-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044036797", 
          "https://doi.org/10.1186/1752-0509-6-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044279120", 
          "https://doi.org/10.1038/ncomms3003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2012.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046697186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m104411200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047971884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.00034-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048110089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/9/5/055001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048270157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1108229109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049093877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2012.00050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050104834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/embor.2009.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053157792", 
          "https://doi.org/10.1186/1752-0509-3-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0305937101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053209982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2012.05.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053639125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1119959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081592861", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Measuring the agreement between a gene expression profile and a known transcriptional regulatory network is an important step in the functional interpretation of bacterial physiological state. In this way, general design principles can be explored. One such interpretive framework is the relationship of digital control, that is, the impact of sequence-specific interactions, and analog control, i.e., the extent of the influence of chromosomal structure. Here, we present time-resolved gene expression profiles of Escherichia coli\u2019s growth cycle as measured by RNA-seq. We extend methods which have been developed for discrete sets of differentially expressed genes and apply them to the wild type and two mutant time-series for which the global transcriptional regulators fis and hns were inactivated. We test our continuous methods using simulated \u2018expression profiles\u2019 generated from random Boolean network dynamics where we observe a clear trade-off between maximum response and level of detail included. In the real time-course expression data, we find strong interdependent changes of digital and analog control during the exponential growth phase and a dominance of analog control during the stationary phase. Our investigation puts forward a simple and reliable method for quantifying the match between time-resolved gene expression profiles and a transcriptional regulatory network. The method reveals a systematic compensatory interplay of digital and analog control in the genetic regulation of E. coli\u2019s growth cycle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-016-0035-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Interplay of digital and analog control in time-resolved gene expression profiles", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7facb098c1e3b0e32f7fd61890bcfa7c8f8f703a6e2d8d2f5a6979862ae59a5c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-016-0035-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026800673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-016-0035-7", 
      "https://app.dimensions.ai/details/publication/pub.1026800673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0035-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0035-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0035-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0035-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0035-7'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-016-0035-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na574601330544693912590cfa82b074f
4 schema:citation sg:pub.10.1038/35065725
5 sg:pub.10.1038/ncomms3003
6 sg:pub.10.1038/nmeth.2016
7 sg:pub.10.1038/nrg3885
8 sg:pub.10.1038/nrmicro2832
9 sg:pub.10.1038/nrmicro3007
10 sg:pub.10.1038/srep07870
11 sg:pub.10.1186/1478-811x-11-43
12 sg:pub.10.1186/1752-0509-1-44
13 sg:pub.10.1186/1752-0509-2-18
14 sg:pub.10.1186/1752-0509-3-119
15 sg:pub.10.1186/1752-0509-5-40
16 sg:pub.10.1186/1752-0509-6-41
17 https://app.dimensions.ai/details/publication/pub.1081592861
18 https://doi.org/10.1002/9783527626359.ch3
19 https://doi.org/10.1016/j.cell.2012.05.044
20 https://doi.org/10.1016/j.febslet.2012.03.051
21 https://doi.org/10.1016/j.physrep.2005.10.009
22 https://doi.org/10.1016/j.physrep.2008.09.002
23 https://doi.org/10.1038/embor.2009.232
24 https://doi.org/10.1038/msb4100120
25 https://doi.org/10.1039/c3mb25515h
26 https://doi.org/10.1046/j.1365-2958.2003.03461.x
27 https://doi.org/10.1046/j.1365-2958.2003.03805.x
28 https://doi.org/10.1073/pnas.0305937101
29 https://doi.org/10.1073/pnas.0811168106
30 https://doi.org/10.1073/pnas.1108229109
31 https://doi.org/10.1073/pnas.97.17.9419
32 https://doi.org/10.1074/jbc.m104411200
33 https://doi.org/10.1088/1478-3975/9/5/055001
34 https://doi.org/10.1093/bioinformatics/btg120
35 https://doi.org/10.1093/bioinformatics/bth448
36 https://doi.org/10.1093/nar/gkq934
37 https://doi.org/10.1093/nar/gks014
38 https://doi.org/10.1093/nar/gks1201
39 https://doi.org/10.1098/rsif.2012.0490
40 https://doi.org/10.1098/rsta.2011.0231
41 https://doi.org/10.1126/science.1119959
42 https://doi.org/10.1128/mbio.00034-11
43 https://doi.org/10.1371/journal.pone.0001672
44 https://doi.org/10.1523/jneurosci.4423-13.2014
45 https://doi.org/10.3389/fncom.2012.00050
46 https://doi.org/10.3390/metabo2030632
47 schema:datePublished 2016-12
48 schema:datePublishedReg 2016-12-01
49 schema:description Measuring the agreement between a gene expression profile and a known transcriptional regulatory network is an important step in the functional interpretation of bacterial physiological state. In this way, general design principles can be explored. One such interpretive framework is the relationship of digital control, that is, the impact of sequence-specific interactions, and analog control, i.e., the extent of the influence of chromosomal structure. Here, we present time-resolved gene expression profiles of Escherichia coli’s growth cycle as measured by RNA-seq. We extend methods which have been developed for discrete sets of differentially expressed genes and apply them to the wild type and two mutant time-series for which the global transcriptional regulators fis and hns were inactivated. We test our continuous methods using simulated ‘expression profiles’ generated from random Boolean network dynamics where we observe a clear trade-off between maximum response and level of detail included. In the real time-course expression data, we find strong interdependent changes of digital and analog control during the exponential growth phase and a dominance of analog control during the stationary phase. Our investigation puts forward a simple and reliable method for quantifying the match between time-resolved gene expression profiles and a transcriptional regulatory network. The method reveals a systematic compensatory interplay of digital and analog control in the genetic regulation of E. coli’s growth cycle.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N39e68e03e8fd46dda0f05b581be16869
54 N69c39c885d7c425baf89e46782f7efab
55 sg:journal.1295581
56 schema:name Interplay of digital and analog control in time-resolved gene expression profiles
57 schema:pagination 8
58 schema:productId N2ea6e0ebaf3f4249a909560ffd0ab336
59 Nc8f3f19363a641e4878bc9c671b82484
60 Nd54da25fd79a4194bc125409bfd64221
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026800673
62 https://doi.org/10.1140/epjnbp/s40366-016-0035-7
63 schema:sdDatePublished 2019-04-11T12:41
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nc3fa76e1088342e4ae444faae324b578
66 schema:url https://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0035-7
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2ea6e0ebaf3f4249a909560ffd0ab336 schema:name dimensions_id
71 schema:value pub.1026800673
72 rdf:type schema:PropertyValue
73 N39e68e03e8fd46dda0f05b581be16869 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 N4bf20793b8c348318907120a2a964fcc rdf:first sg:person.01334610443.39
76 rdf:rest rdf:nil
77 N69c39c885d7c425baf89e46782f7efab schema:volumeNumber 4
78 rdf:type schema:PublicationVolume
79 N6a78f43b788d496aa89c38d1aee58c20 rdf:first sg:person.0714040117.13
80 rdf:rest Nb76aa10dd9574251a847909ea622de5f
81 Na574601330544693912590cfa82b074f rdf:first sg:person.01322430734.79
82 rdf:rest N6a78f43b788d496aa89c38d1aee58c20
83 Nb76aa10dd9574251a847909ea622de5f rdf:first sg:person.01070047103.26
84 rdf:rest N4bf20793b8c348318907120a2a964fcc
85 Nc3fa76e1088342e4ae444faae324b578 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nc8f3f19363a641e4878bc9c671b82484 schema:name readcube_id
88 schema:value 7facb098c1e3b0e32f7fd61890bcfa7c8f8f703a6e2d8d2f5a6979862ae59a5c
89 rdf:type schema:PropertyValue
90 Nd54da25fd79a4194bc125409bfd64221 schema:name doi
91 schema:value 10.1140/epjnbp/s40366-016-0035-7
92 rdf:type schema:PropertyValue
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
97 schema:name Genetics
98 rdf:type schema:DefinedTerm
99 sg:journal.1295581 schema:issn 2195-0008
100 schema:name EPJ Nonlinear Biomedical Physics
101 rdf:type schema:Periodical
102 sg:person.01070047103.26 schema:affiliation https://www.grid.ac/institutes/grid.15078.3b
103 schema:familyName Muskhelishvili
104 schema:givenName Georgi
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047103.26
106 rdf:type schema:Person
107 sg:person.01322430734.79 schema:affiliation https://www.grid.ac/institutes/grid.419538.2
108 schema:familyName Beber
109 schema:givenName Moritz E.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322430734.79
111 rdf:type schema:Person
112 sg:person.01334610443.39 schema:affiliation https://www.grid.ac/institutes/grid.15078.3b
113 schema:familyName Hütt
114 schema:givenName Marc-Thorsten
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334610443.39
116 rdf:type schema:Person
117 sg:person.0714040117.13 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
118 schema:familyName Sobetzko
119 schema:givenName Patrick
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714040117.13
121 rdf:type schema:Person
122 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
123 https://doi.org/10.1038/35065725
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ncomms3003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044279120
126 https://doi.org/10.1038/ncomms3003
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmeth.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029250
129 https://doi.org/10.1038/nmeth.2016
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nrg3885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013591105
132 https://doi.org/10.1038/nrg3885
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nrmicro2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030236624
135 https://doi.org/10.1038/nrmicro2832
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nrmicro3007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012743620
138 https://doi.org/10.1038/nrmicro3007
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/srep07870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003313210
141 https://doi.org/10.1038/srep07870
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1478-811x-11-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008642132
144 https://doi.org/10.1186/1478-811x-11-43
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1752-0509-1-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005927047
147 https://doi.org/10.1186/1752-0509-1-44
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1752-0509-2-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042169689
150 https://doi.org/10.1186/1752-0509-2-18
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/1752-0509-3-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053157792
153 https://doi.org/10.1186/1752-0509-3-119
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/1752-0509-5-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027606791
156 https://doi.org/10.1186/1752-0509-5-40
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1752-0509-6-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044036797
159 https://doi.org/10.1186/1752-0509-6-41
160 rdf:type schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1081592861 schema:CreativeWork
162 https://doi.org/10.1002/9783527626359.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005291259
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cell.2012.05.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053639125
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.febslet.2012.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046697186
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.physrep.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218506
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1038/embor.2009.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051933778
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1038/msb4100120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018491576
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c3mb25515h schema:sameAs https://app.dimensions.ai/details/publication/pub.1007610930
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1046/j.1365-2958.2003.03461.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014855813
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1046/j.1365-2958.2003.03805.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033371171
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.0305937101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209982
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1073/pnas.0811168106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027505091
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.1108229109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049093877
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.97.17.9419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026251101
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1074/jbc.m104411200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047971884
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/1478-3975/9/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048270157
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btg120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253374
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/bth448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000785286
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gkq934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006719708
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/nar/gks014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011740649
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/gks1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008416371
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1098/rsif.2012.0490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011838531
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1098/rsta.2011.0231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009542705
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1119959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452739
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/mbio.00034-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048110089
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pone.0001672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553048
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1523/jneurosci.4423-13.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040405061
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3389/fncom.2012.00050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050104834
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3390/metabo2030632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280601
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.10253.35 schema:alternateName Philipp University of Marburg
221 schema:name Department of Chromosome Biology, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
222 Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.15078.3b schema:alternateName Jacobs University
225 schema:name Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.419538.2 schema:alternateName Max Planck Institute for Molecular Genetics
228 schema:name Bioinformatics Group, Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, 14195, Berlin, Germany
229 Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...